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Abstract

A subset D of the vertex set of a graph G is a (k, p)-dominating set if every vertex
v ∈ V (G) \D is within distance k to at least p vertices in D. The parameter γk,p(G)
denotes the minimum cardinality of a (k, p)-dominating set of G. In 1994, Bean,
Henning and Swart posed the conjecture that γk,p(G) ≤ p

p+k
n(G) for any graph G

with δk(G) ≥ k +p−1, where the latter means that every vertex is within distance k
to at least k + p − 1 vertices other than itself. In 2005, Fischermann and Volkmann
confirmed this conjecture for all integers k and p for the case that p is a multiple
of k. In this paper we show that γ2,2(G) ≤ (n(G) + 1)/2 for all connected graphs G
and characterize all connected graphs with γ2,2 = (n + 1)/2. This means that for
k = p = 2 we characterize all connected graphs for which the conjecture is true
without the precondition that δ2 ≥ 3.
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1 Terminology and introduction

In this paper we consider simple, finite and undirected graphs G = (V, E) with vertex
set V and edge set E. The number of vertices |V | is called the order of G and is denoted
by n(G).

If there is an edge between two vertices u, v ∈ V , then we denote the edge by uv.
Furthermore, we call the vertex v a neighbor of u and say that uv is incident with u. The
neighborhood of a vertex u is defined as the set {v | uv ∈ E} and is usually denoted by N(u).
For a vertex v ∈ V we define the degree of v as d(v) = |N(v)|. If d(v) = 1, then the vertex v

is called a leaf of G. The minimum degree of G is denoted by δ(G) = min{d(v) | v ∈ V (G)}.
For any positive integer k and any graph G the k-th power Gk of G is the graph

with vertex set V (G) where two different vertices are adjacent if and only if the distance
between them is at most k in G. Furthermore, the minimum k-degree δk(G) of G is defined
by δk(G) = δ(Gk).

Let X ⊆ V be a subset of the vertex set of a graph G = (V, E). Then G − X denotes
the graph that is obtained by removing all vertices of X and all edges that are incident
with at least one vertex of X from G. The diameter of a graph is defined as the maximum
distance between all pairs of vertices.
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For two positive integers k and p a subset D of the vertex of a graph G is a (k, p)-
dominating set of G if every vertex v ∈ V (G) \D is within distance k to at least p vertices
in D. The parameter γk,p(G) denotes the minimum cardinality of a (k, p)-dominating set
of G and is called the (k, p)-domination number.

This domination concept is a generalization of the two concepts distance domination
and p-domination. For p = 1 a (k, p)-dominating set of G is called a distance-k dominating
set and for k = 1 a (k, p)-dominating set of G is called a p-dominating set.

For other graph terminologies we refer the reader to the monographs by Haynes, Hedet-
niemi and Slater [4, 5].

In 1994, Bean, Henning and Swart [1] posed the following conjecture for the (k, p)-
domination number γk,p.

Conjecture 1 (Bean, Henning & Swart [1] 1994). Let k and p be arbitrary positive integers
and let G be a graph of minimum k-degree δk(G) ≥ k + p − 1. Then

γk,p(G) ≤
p

p + k
n(G).

This conjecture is valid for p = 1 and all integers k ≥ 1 as proved by Meir and
Moon [6] in 1975 (the distance-k domination number is called k-covering number in [6]).
The conjecture is also true for k = 1 and all integers p ≥ 1 as proved by Cockayne, Gamble
and Shepherd [2] in 1985. In 2005, Fischermann and Volkmann [3] confirmed that the
conjecture is valid for all integers k and p, where p is a multiple of k, and presented weaker
statements in the remaining cases.

Note that if k = p = 2, then Conjecture 1 requires that δ2(G) ≥ 3. In this paper,
we shall show that the conjecture is true for k = p = 2 without the precondition that
δ2(G) ≥ 3 for all connected graphs with the exception of the following class.

Definition 2. A spider is a graph G with vertex set V = {x}∪{yi | i = 1, 2, . . . , k}∪{zi | i =
1, 2, . . . , k} and edge set E = {xyi | i = 1, 2, . . . , k} ∪ {yizi | i = 1, 2, . . . , k}, where k ≥ 1
is an integer. The vertex x is called the centre of G.

In particular, note that if G is a spider, then δ2(G) = 2. We can calculate the (2, 2)-
domination number of spiders as follows.

Theorem 3. If G is a spider with n vertices, then γ2,2(G) = n+1

2
.

Proof. Let G be a spider as defined in Definition 2. Then it is easy to see that {x}∪{yi | i =
1, 2, . . . , k} is a (2, 2)-dominating set of G.

It remains to proof that there exists no (2, 2)-dominating set D of G such that |D| <
n+1

2
. Assume to the contrary that D is a (2, 2)-dominating set of G such that |D| < n+1

2
.

Note that for each pair yi, zi of vertices of G the vertex yi or the vertex zi or both belong
to D. Since |D| < n+1

2
, it follows that |D ∩ {yi, zi}| = 1 for each i = 1, 2, . . . , k. If

D = {z1, z2, . . . , zk}, then y1 is not (2, 2)-dominated by D, a contradiction. Otherwise
let i be an integer such that yi ∈ D. But then zi is not (2, 2)-dominated by D, again a
contradiction. This completes the proof of this theorem.
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To proof our main result we need the following graph operations.

Definition 4. Let G be a connected graph and let x be a vertex of G.

(i) The graph Gx is obtained from G by adding two leaves as neighbors to x, i.e., V (Gx) =
V (G) ∪ {y, z} and E(Gx) = E(G) ∪ {xy, xz}.

(ii) The graph Gx is obtained from G by adding a path yz of length 1 to G such that y is
a neighbor of x, i.e., V (Gx) = V (G) ∪ {y, z} and E(Gx) = E(G) ∪ {xy, yz}.

2 Results

First we proof a structural result.

Theorem 5. Let G be a connected graph and let D be a (1, 1)- and (2, 2)-dominating set
of G. If x is an arbitrary vertex of G, then either D ∪ {x} or D ∪ {y} is a (1, 1)- and
(2, 2)-dominating set of Gx and D ∪ {z} is a (1, 1)- and (2, 2)-dominating set of Gx.

Proof. Let x be an arbitrary vertex of G and let D be a (1, 1)- and (2, 2)-dominating set
of G.

We consider Gx first. If x ∈ D, then both neighbors of y in Gx belong to D ∪ {z}.
Otherwise x has a neighbor v ∈ D which naturally has distance 2 from y. Therefore D∪{z}
is a (1, 1)- and (2, 2)-dominating set of Gx.

Now we consider Gx. If x ∈ D, then, since z is a neighbor of x and has distance 2 from
y, the set D ∪ {y} is a (1, 1)- and (2, 2)-dominating set of Gx. Otherwise x has a neighbor
v ∈ D which naturally has distance 2 from y and z. Therefore D ∪ {x} is a (1, 1)- and
(2, 2)-dominating set of Gx.

Our main result follows.

Theorem 6. If T is a tree on n ≥ 3 vertices, then there exists a minimum (1, 1)- and
(2, 2)-dominating set D of T such that |D| ≤ n+1

2
. In addition, equality holds if and only

if T is a spider.

Proof. We shall prove the proposition by induction on n.
The only tree T with n = 3 vertices is the path xyz of length 2. This means that T is

a spider and two arbitrary vertices of T are a (1, 1)- and (2, 2)-dominating set of T .
If T is a tree with n = 4 vertices, then either T is the path of length 3 or T is a star.

In the first case the two leaves of T and in the latter case the centre of T and an arbitrary
other vertex are a (1, 1)- and (2, 2)-dominating set of T .

Let T be a tree on n = 5 vertices. If T is the path v1v2v3v4v5 of length 4, then T is a
spider and {v1, v3, v5} is a (1, 1)- and (2, 2)-dominating set of T . If T has diameter 3, then
the two vertices that are not leaves form a (1, 1)- and (2, 2)-dominating set of T . In the
remaining case T has diameter 2 and thus, T is a star. Then the centre of T and another
arbitrary vertex of T form a (1, 1)- and (2, 2)-dominating set of T .

Now let T be a tree on n ≥ 6 vertices. Note that each spider has an odd number of
vertices. In addition, note that there exists a vertex x in T such that either
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(1) two leaves y, z of T are neighbors of x or

(2) the vertex x is not a leaf and there exists a vertex y with d(y) = 2 that has x and a
leaf z as neighbors.

Let x, y, z be vertices of T that fulfill either (1) or (2). By the induction hypothesis, the
tree T − {y, z} has a minimum (1, 1)- and (2, 2)-dominating set D such that

|D| ≤
n(T − {y, z}) + 1

2
=

n − 1

2
.

If x, y, z fulfill (1), then, by Theorem 5, D∪{x} or D∪{y} is a (1, 1)- and (2, 2)-dominating
set of T = (T − {y, z})x. If x, y, z fulfill (2), then, by Theorem 5, D ∪ {z} is a (1, 1)- and
(2, 2)-dominating set of T = (T − {y, z})x.

If T −{y, z} is not a spider in one of the cases above, then, by the induction hypothesis,
|D| ≤ n−2

2
and thus,

|D ∪ {x}| ≤ |D ∪ {y}| = |D ∪ {z}| = |D| + 1 ≤
n

2
.

Suppose now that T − {y, z} is a spider for all vertices x, y, z that fulfill (1) or (2). In
this case we shall show that T itself is a spider or a path P7 of order 7 which has a (1, 1)-
and (2, 2)-dominating set of size 3. Let T − {y, z} be a spider as defined in Definition 2.

Assume that x, y, z fulfill (1). Then there exists an integer i such that T − {yi, zi} is
not a spider, a contradiction.

So assume now that x, y, z fulfill (2). Note that k ≥ 2, since |V (T )| ≥ 6.
If k ≥ 3 or k = 2 and T 6= P7, then either there exists an integer i such that T −{yi, zi}

is not a spider, again a contradiction, or the centre of T is the only neighbor of y in T .
But in the latter case it is immediate that T is a spider.

If k = 2 and T = P7, then let T = v1v2 . . . v7. In this case {v1, v4, v7} is a (1, 1)- and
(2, 2)-dominating set of T , which completes the proof of this theorem.

Theorem 6 immediately implies the following corollaries.

Corollary 7. If T is a tree on n ≥ 3 vertices, then γ2,2(T ) ≤ n+1

2
with equality if and only

if T is a spider.

Corollary 8. If G is a connected graph on n ≥ 3 vertices, then there exists a minimum
(1, 1)- and (2, 2)-dominating set D of G such that |D| ≤ n+1

2
. In addition, equality holds

if and only if G is a spider.

Proof. If G has a spanning tree that is not a spider, then the inequality is true by The-
orem 6. Otherwise either G itself is a spider or G is a cycle v1v2v3v4v5v1 of length 5.
In the latter case {v1, v3} is a (1, 1)- and (2, 2)-dominating set of G with the required
cardinality.

Corollary 9. If G is a connected graph on n ≥ 3 vertices, then γ2,2(G) ≤ n+1

2
with equality

if and only if G is a spider.
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