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Abstract

The complementary prism GG of a graph G arises from the disjoint union of G and the

complement G of G by adding a perfect matching joining corresponding pairs of vertices

in G and G. Partially answering a question posed by Haynes et al. (The complementary

product of two graphs, Bull. Inst. Comb. Appl. 51, 21-30, 2007) we provide an efficient

characterization of the circumference of the complementary prism TT of a tree T and

show that TT has cycles of all lengths between 3 and its circumference. Furthermore, we

prove that for a given graph of bounded maximum degree it can be decided in polynomial

time whether its complementary prism is Hamiltonian.
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1 Introduction

In [9] Haynes et al. introduce the complementary product of two graphs as a generalization of

the Cartesian product. As an interesting special case they consider the complementary prism

GG of a graph G. The complementary prism GG is isomorphic to the graph that arises from

the disjoint union of G and the complement G of G by adding a perfect matching joining

corresponding pairs of vertices in G and G.

In [9] Haynes et al. study elementary properties of complementary products/prisms related

to degrees, distances, independence, and domination. Complementary prisms were further

investigated in [3, 4, 11, 12]. At the end of [9] Haynes et al. list some open questions and

problems. The first of their questions is which complementary prisms are Hamiltonian.

Hamiltonicity and more generally cycles in ordinary prisms, that is, Cartesian products

with K2, attracted a lot of interest. Kaiser et al. [10] trace this interest back to Barnette’s

famous open conjecture that the graphs of simple 4-polytopes are Hamiltonian. A related open

conjecture posed by Rosenfeld and Barnette [15] is that the prism of a 3-connected planar graph

is Hamiltonian. Hamiltonicity and pancyclism of prisms were studied for instance in [1,2,6,7,14],

see [10] and Section 30.2 of [8] for further discussion of the background and partial results.

In the present paper we study Hamiltonicity of complementary prisms and provide some

partial answers to the question posed in [9]. We characterize the circumference of comple-

mentary prisms of trees, which implies a characterization of those trees whose complementary

prism is Hamiltonian. Furthermore, we study the algorithmic problem of deciding whether the

complementary prism of a given graph is Hamiltonian.

We consider finite, simple, and undirected graphs and use standard terminology and nota-

tion. Let G be a graph. If u is a vertex of G, then u denotes the vertex of G corresponding to u.

Therefore, if the vertex set V (G) of G is {v1, . . . , vn}, then the vertex set of GG will be denoted

by V (G) ∪ V (G) where V (G) = {v1, . . . , vn}. Furthermore, the graph GG contains an edge

between two distinct of its vertices x and y if and only if either x, y ∈ V (G) and xy ∈ E(G)

or x, y ∈ V (G) and xy 6∈ E(G) or there is some vertex u of G with {x, y} = {u, u}. A graph

G is c-pancyclic for a positive integer c if G has cycles of all lengths ℓ with 3 ≤ ℓ ≤ c. The
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maximum length of a cycle of a graph is its circumference.

2 Trees

Our first result is a lower bound on the number of cycle lengths of complementary prisms of

trees. A cycle in the complementary prism TT of a tree T is good if it uses two independent

edges between vertices in V (T ) and very good if it uses three independent edges between vertices

in V (T ). The reason to consider good cycles in TT is that they can easily be extended.

Theorem 1. If T is a tree of order n ≥ 5, then TT is (n+2)-pancyclic. Furthermore, TT has

circumference n+ 2 if and only if T = K1,n−1.

Proof. First, we assume that T = K1,n−1. The complement T of T consists of a clique of order

n − 1 and an isolated vertex. Hence T is (n − 1)-pancyclic. Let v, w ∈ V (T ) be two distinct

leaves of T and let vuw the unique v-w-path in T . Note that there exist paths of lengths

1, 2, . . . , n− 2 between v and w in T . These paths together with the path vvuww form cycles

of lengths 5, 6, . . . , n + 2 in TT , that is, TT is (n + 2)-pancyclic. Clearly, the isolated vertex

of T has degree 1 in TT and is therefore not contained in any cycle of TT . Furthermore, since

every leaf of T has degree exactly 2 in TT , every cycle in TT contains at most two leaves of

T and therefore at most three vertices of T . It follows that the circumference of TT is exactly

n + 2.

Next, we assume that T 6= K1,n−1. By induction on n, we show that TT is (n+3)-pancyclic

and has a good cycle of length n + 3.

If n = 5, then T is either P5 or the tree K ′

1,3 that arises from a claw K1,3 by subdividing

one edge. We denote the vertices as in Figure 1. If T is P5, then v1v3v5v1, v1v4v2v5v1,

v1v4v2v5v3v1, v1v2v3v4v4v1v1, and v1v2v3v4v5v5v1v1 are cycles of lengths between 3 and 7

and v1v2v2v4v4v3v3v1v1 is a good cycle of length 8. If T is K ′

1,3, then v1v4v5v1, v1v5v2v4v1,

v1v2v3v3v1v1, v1v2v3v4v4v1v1, and v1v2v3v4v4v5v1v1 are cycles of lengths between 3 and 7 and

v1v2v3v4v4v2v5v1v1 is a good cycle of length 8.

Now let n ≥ 6. Since T 6= K1,n−1, there exists a leaf v of T such that T − v 6= K1,n−2. Let
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T ′ = T − v. By induction, T ′T ′ is (n + 2)-pancyclic and has a good cycle C of length n + 2.

Since v has only one non-neighbor in V (T ′), the cycle C contains an edge vavb such that va

and vb are neighbors of v. Replacing vavb with vav vb results in a good cycle of length n+ 3 in

TT , which completes the proof.

P5

✉ ✉ ✉ ✉ ✉

v1 v2 v3 v4 v5

K ′

1,3

✉ ✉ ✉ ✉ ✉

v1 v2 v3 v4 v5

T ∗

✉

✉

✉ ✉

✉

✉

✟
✟

✟
❍
❍
❍

❍
❍

❍

✟
✟

✟

v1
v2

v3

v4
v5

v6

Figure 1: The path P5, the tree K ′

1,3, and the tree T ∗.

In Theorem 1, we saw that complementary prisms of trees can be far from being Hamilto-

nian. Our main result in this section characterizes the circumference of these graphs. In fact,

for a tree T , the circumference of TT is determined by a unique substructure of T that forces

local restrictions on cycles of TT .

Let T be a tree. A subforest F of T is a special subforest of T generated by U if U is a set

of vertices of T and F has components F1, . . . , Ft such that for i ∈ [t], Ui = U ∩ V (Fi), and

Ni = NT (Ui), we have that

• Fi is the subtree of T induced by Ui ∪Ni,

• Ui and Ni form the bipartition of the tree Fi, and

• every vertex in Ni has degree at least 3 in Fi.

Let N = NT (U) = N1∪· · ·∪Nt. Note that every vertex in U has the same degree in F as in T .

Since all leaves of F necessarily belong to U , the forest F uniquely determines the set U . While

U is an independent set of T , the set N is independent in F but not necessarily independent

in T .

The deficit def(F ) of F is defined as

def(F ) = |U | − 2|N |.
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T

u1

v1

u2

u3

u4

v2

u5

u6

v3

u7

u8w1w2

Figure 2: The maximum special subforest F of T is generated by {u1, . . . , u8}. It consists of the
two components F1 generated by {u1, . . . , u5} and F2 generated by {u6, u7, u8}. The edge v2v3
belongs to T but not to F . The vertices w1 and w2 do not belong to any special subforest. The
deficit of F is 2.

If F has t components, then it has exactly |V (F )| − t = |U | + |N | − t edges. By the degree

condition on the vertices in N , the forest F has at least 3|N | edges. This implies that the

deficit of F is at least t, that is, every non-empty special forest has positive deficit.

As we will see below in Lemma 7, every tree T has a unique special subforest F of maximum

order. Therefore,

f(T ) = 2|V (T )| − def(F )

is a well defined quantity depending only on T .

Our main result is the following.

Theorem 2. If T is a tree of order n ≥ 6 and diameter at least 4, then the circumference of

TT is f(T ) and TT is f(T )-pancyclic.

In view of Theorem 2, some remarks concerning trees of small order or of diameter at most

3 are in order. Theorem 1 already completely describes the cycle lengths of complementary

prisms of stars. It is instructive to check that P4 is the only tree of order at most 5 with a

Hamiltonian complementary prism. Also the cycle lengths of complementary prisms of trees of

diameter 3 are easily determined. The tree T ∗ of order 6 and diameter 3 (cf. Figure 1) shows

that Theorem 2 does not hold for all trees. In fact, f(T ∗) = 12 while v1v5v3v3v2v2v6v6v5v4v4v1

is a longest cycle of T ∗T ∗ of length 11.

Since every non-empty special subforest has positive deficit, Theorem 2 yields a characteri-

zation of those trees whose complementary prism is Hamiltonian.
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Corollary 3. If T is a tree of order n ≥ 6 and diameter at least 4, then TT is Hamiltonian if

and only if T does not contain a non-empty special subforest.

The next three lemmas collect essential properties of special subforests.

Lemma 4. If T is a tree of order n and F is a special subforest of T , then the circumference

of TT is at most 2n− def(F ).

Proof. Let F be generated by U . Let N = NT (U). Let C be a cycle of maximum length in TT .

Let U∗ = U ∩ V (C). Since every vertex u in U∗ has exactly one neighbor in V (T ), every such

vertex is joined by some edge of C to some neighbor p(u) in N . Note that there can be two

choices for p(u) and that, for every vertex w in N , there are at most two vertices u and v in U∗

with w = p(u) = p(v). Double counting the pairs (u, p(u)) where u ∈ U∗ implies |U∗| ≤ 2|N |.

Since the length of C is at most

|V (T )|+ |V (T )| − (|U | − |U∗|) ≤ |V (T )|+ |V (T )| − (|U | − 2|N |) = 2n− def(F ),

the proof is complete.

Lemma 5. Let T be a tree and let Fi be a special subforest of T generated by Ui for i ∈ {1, 2}.

Then F1 ∪ F2 is a special subforest of T generated by U1 ∪ U2.

Proof. Let Ni = NT (Ui) for i ∈ {1, 2}. For a contradiction, we assume that U1 ∩ N2 is not

empty. Let u ∈ U1 ∩ N2. Since u ∈ N2, the vertex u has at least 3 neighbors in F2 that all

belong to U2. Since u ∈ U1, all neighbors of u in F2 also belong to N1. Hence every vertex in

U1 ∩N2 has at least 3 neighbors in U2 ∩N1 and, by symmetry, every vertex in U2 ∩N1 has at

least 3 neighbors in U1 ∩ N2. Hence F1 ∩ F2 has a component of minimum degree at least 3,

which is impossible because T is a tree. We obtain that (U1 ∩ N2) ∪ (U2 ∩ N1) is empty, that

is, U = U1 ∪ U2 is independent. Let N = NT (U) and let F be the subgraph of T induced by

the edges in F1 and F2. Since (U1 ∩N2) ∪ (U2 ∩N1) is empty and N = N1 ∪N2, U and N are

the two partite sets of F , and every vertex in N has degree at least 3 in F . Hence F = F1 ∪F2

is the special subforest of T generated by U .
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Lemma 6. If F and F ′ are special subforests of a tree T with V (F ) = V (F ′), then F = F ′.

Proof. We prove the statement by induction on the order n of T . For n ≤ 3, the tree T has no

non-empty special subforest and the statement is trivially true. Now let n ≥ 4. Let F and F ′

be special subforests of T with the same vertex set V . Let F and F ′ be generated by U and

U ′, respectively. Let N = NT (U) and N ′ = NT (U
′), that is, V = U ∪N = U ′ ∪N ′.

Let u be an endvertex of a longest path P in F . Since T is a tree of order at least 4, the

vertex u is not isolated in T . Hence u also has a neighbor v in F . By the choice of P , the

vertex u is a leaf of F . This implies that u is a leaf of T and hence also of F ′. We obtain

that u ∈ U ∩ U ′ and v ∈ N ∩ N ′. Let X and X ′ denote the sets of leaves of F and F ′ that

are adjacent to v, respectively. Since F and F ′ are special subforests, it follows that X = X ′,

|X| ≥ 2, and all vertices in X are leaves of T . Furthermore, if P has length 2, then |X| ≥ 3.

Note that every neighbor of v in F or F ′ belongs to U or U ′, respectively. It follows that

F − ({v}∪X) and F ′− ({v}∪X) are special subforests of T − ({v}∪X) with the same vertex

set. By induction, F − ({v} ∪X) = F ′ − ({v} ∪X). If v has a neighbor w in F , then w ∈ U .

By induction, it follows that w ∈ U ′, which implies that w is also a neighbor of v in F ′. By

symmetry, this implies that v has the same neighborhood in F as in F ′. Hence F = F ′ and the

proof is complete.

Lemma 7. Every tree has a unique special subforest of maximum order.

Proof. Let T be a tree. By Lemma 5, the union of two special subforests of T is a special

subforest of T . This implies that all special subforests of maximum order of T have the same

vertex set. Now Lemma 6 implies that all special subforests of maximum order of T coincide.

In order to determine the circumference of the complementary prism of a tree, it suffices to

determine its unique special subforest of maximum order. The following proposition allows to

do so recursively in polynomial time.

Proposition 8. Let T be a tree of order at least 2. Let F be the special subforest of T of

maximum order. Let v be a vertex of T that is adjacent to the maximum possible number ℓ of

leaves of T . Let W denote the set of leaves of T adjacent to v. Let T1, . . . , Tt be the components

7
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of T − ({v}∪W ). For i ∈ [t], let ui be the neighbor of v in V (Ti), let Fi be the special subforest

of Ti of maximum order, and let Fi be generated by Ui.

Given these assumptions,

F =































T [{v} ∪W ] ∪ F1 ∪ · · · ∪ Ft , if (ℓ ≥ 3) ∨ (ℓ = 2 ∧ ∃i ∈ [t] : ui ∈ Ui),

F1 ∪ · · · ∪ Ft , if ℓ = 2 ∧ ∀i ∈ [t] : ui 6∈ Ui,

∅ , if ℓ = 1.

Proof. Let F be generated by U . Let N = NT (U) and, for i ∈ [t], let Ni = NTi
(Ui). Let

n = |V (F )| and, for i ∈ [t], let ni = |V (Fi)|.

First we assume that either ℓ ≥ 3 or ℓ = 2 and there is some index i ∈ [t] with ui ∈ Ui.

Since T [{v} ∪ W ] is a special subforest of T , Lemmas 5 and 7 imply W ⊆ U and v ∈ N .

Clearly, Ti ∩ F is a special subforest of Ti for every i ∈ [t]. Furthermore, W ∪ U1 ∪ · · · ∪ Ut

generates the special subforest F ′ = T [{v} ∪W ]∪F1 ∪ · · · ∪Ft of T . These two remarks imply

n = 1 + ℓ+ n1 + · · ·+ nt, and hence F ′ has maximum order, that is, F = F ′.

Next we assume that ℓ = 2 and that there is no index i ∈ [t] with ui ∈ Ui. Since every vertex

in N has at least three neighbors in U , this implies that V (F ) does not intersect {v} ∪ W .

Again Ti ∩ F is a special subforest of Ti for every i ∈ [t]. Since F ′′ = F1 ∪ · · · ∪ Ft is a special

subforest of T , we obtain n = n1 + · · ·+ nt. Hence F ′′ has maximum order, that is, F = F ′′.

If F is non-empty, then the definition of special subforests implies that the neighbor v′ of

an endvertex of a longest path in F is adjacent to at least two leaves of T . Therefore, if no

vertex of T is adjacent to at least two leaves of T , then F is empty.

This completes the proof.

Corollary 9. There is a polynomial time algorithm that determines the circumference of the

complementary prism of a given tree.

We now proceed to the proof of Theorem 2.

Proof of Theorem 2. We say that a 5-tuple (T, F, U, C−, C) is good if

8
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(i) T is a tree of order at least 6 and diameter at least 4,

(ii) F is the unique special subforest of T of maximum order and F is generated by U ,

(iii) TT is f(T )-pancyclic,

(iv) C− is a good cycle of TT of lengths f(T )− 1,

(v) C is a very good cycle of TT of lengths f(T ),

(vi) C contains all vertices in (V (T ) \ V (F )) ∪ V (T ), and

(vii) for every vertex v in NT (U), the cycle C contains a path w1w1vw2w2 where w1 and w2

are two neighbors of v in F .

Let T be a tree of order n and diameter at least 4 where n ≥ 6. Let F be the unique special

subforest of T of maximum order. Let F be generated by U and let N = NT (U). By Lemma 4,

the circumference of TT is at most f(T ). Therefore, it suffices to show the existence of two

cycles C− and C of TT such that (T, F, U, C−, C) is good. We will establish the existence of

C− and C by induction on n.

First let n = 6. Since the diameter of T is at least 4, the diameter is 4 or 5 and F is empty,

that is, f(T ) = 2n = 12. We may assume that P5 as in Figure 1 is a subgraph of T . We have

observed in the proof of Theorem 1 that P5P 5 is 8-pancyclic and has a good cycle of length 8.

Furthermore, v1v2v3v4v5v5v2v4v1v1 (cf. Figure 1) is a good cycle of P5P 5 of length 9. This

already implies that TT is 9-pancyclic. Let v6 denote the sixth vertex of T . By symmetry, we

may assume that v6 has a neighbor in {v3, v4, v5}.

If v3v6 ∈ E(T ) or v4v6 ∈ E(T ) or v5v6 ∈ E(T ), then

v1v2v3v4v5v5v2v4v6v1v1, v1v2v2v5v5v4v3v6v6v4v1v1, and v1v2v2v4v4v5v5v3v3v6v6v1v1; or

v1v2v3v4v5v5v2v6v3v1v1, v1v2v3v4v5v5v3v6v2v4v1v1, and v1v2v3v3v5v5v4v6v6v2v4v1v1; or

v1v2v3v4v5v6v6v2v5v1v1, v1v2v3v4v5v6v6v2v5v3v1v1, and v1v2v3v4v5v6v6v3v5v2v4v1v1

9
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are cycles of TT of lengths 10 to 12 such that the cycle of length 11 is good and the cycle of

length 12 is very good, respectively. This completes the base case of the induction.

Now let n ≥ 7.

We consider different cases.

Case 1: Some vertex v of T is adjacent to at least 3 leaves of T .

Let W denote the set of leaves of T that are adjacent to v and let w ∈ W . The choice of F

implies W ⊆ U and v ∈ N . Let T (0) = T − w.

If either |W | ≥ 4 or |W | = 3 and U contains an element of NT (v)\W , then let F (0) = F −w

and let U (0) = U \ {w}; otherwise let F (0) = F − ({v} ∪W ) and let U (0) = U \ W . In both

cases F (0) is a special subforest of T (0) generated by U (0), which implies f(T (0)) ≥ f(T )− 1.

Now let F̃ (0) be the special subforest of T (0) of maximum order. Let F̃ (0) be generated by

Ũ (0) and let Ñ (0) = NT (0)(Ũ (0)). Since v has neighbors of degree 1 in T (0), we have v 6∈ Ũ (0). If

v ∈ Ñ (0), then T [V (F̃ (0)) ∪ {w}] is a special subforest of T , which implies f(T ) ≥ f(T (0)) + 1.

If v 6∈ Ñ (0), then |W | = 3, W ∩ V (F̃ (0)) = ∅, and Ũ (0) contains no element of NT (v) \W . Now

T [V (F̃ (0)) ∪ ({v} ∪W )] is a special subforest of T , which also implies f(T ) ≥ f(T (0)) + 1.

Altogether it follows that f(T ) = f(T (0)) + 1 and hence F (0) as defined above is the special

subforest of T (0) of maximum order.

Since T (0) has order at least 6 and diameter at least 4, we obtain, by induction, the existence

of two cycles C(0)− and C(0) of T (0)T (0) such that (T (0), F (0), U (0), C(0)−, C(0)) is good. Since w

is adjacent to all vertices in V (T (0)) \ {v} and C(0) is very good, C(0) contains an edge vavb

such that w is adjacent to va and vb. Hence replacing vavb in C(0) with vawvb results in a very

good cycle C of TT such that (T, F, U, C(0), C) is good, which completes the proof in this case.

A path P = v0 · · · vr of length at least 3 in T is maximal, if v1 and vr−1 have at most one

neighbor in T that is not a leaf. Note that v0 and vr are necessarily leaves of T .

Case 2: There is no maximal path P = v0 · · · vr in T such that the tree

T − ({v1} ∪ (NT (v1) \ {v2}))

10
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has order at least 6 and diameter at least 4.

By Case 1 and the assumption of Case 2, the tree T is one of the twelve trees shown in Figure 3.

T1

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

T2

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

T3

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

T4

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

T5

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

v8
s

T6

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

v8
s

T7

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

T8

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

T9

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

v8
s

T10

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

v8
s

T11

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

v8
s

v9
s

T12

v1
s

v2
s

v3
s

v4
s

v5
s

v6
s

v7
s

Figure 3: Twelve trees T1, . . . , T12.

Note that each Ti has a leaf u such that Ti − u has a pancyclic complementary prism.

Therefore, since none of the trees T1, . . . , T11 has a non-empty special subforest, it suffices, to

exhibit for every i ∈ [11], a good cycle C−

i of TiT i of length 2|V (Ti)| − 1 and a very good

cycle Ci of TiT i of length 2|V (Ti)| such that (Ti, ∅, ∅, C
−

i , Ci) is good. Similarly, since T12 is

its own special subforest of maximum order generated by {v1, v2, v4, v6, v7}, we have f(T12) =

2|V (T12)| − def(T12) = 13 and it suffices, to exhibit a good cycle C−

12 of T12T 12 of length 12 and

a very good cycle C12 of T12T 12 of length 13 such that (T12, T12, {v1, v2, v4, v6, v7}, C
−

12, C12) is

good. Such cycles are given in Table 1.
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i C−

i Ci

1 v1v2v2v7v7v6v6v4v4v5v5v3v1v1 v1v2v2v6v4v4v5v5v3v3v6v7v7v1v1

2 v1v2v3v4v5v6v7v7v3v6v2v5v1v1 v1v2v3v4v5v6v7v7v5v3v6v2v4v1v1

3 v1v2v3v3v5v5v6v6v4v4v7v7v1v1 v1v2v3v3v5v5v6v6v2v4v4v7v7v1v1

4 v1v2v2v6v6v5v7v7v4v4v3v3v1v1 v1v2v2v6v6v5v7v7v4v4v3v3v5v1v1

5 v1v2v2v4v6v6v5v7v7v8v8v4v3v3v1v1 v1v2v2v4v6v6v5v7v7v8v8v4v3v3v5v1v1

6 v1v3v2v2v4v4v5v5v3v7v7v6v8v8v1v1 v1v3v2v2v6v4v4v5v5v3v7v7v6v8v8v1v1

7 v1v4v7v7v3v3v2v2v6v6v5v5v1v1 v1v4v7v7v3v3v2v2v4v6v6v5v5v1v1

8 v1v5v5v2v2v4v3v3v7v7v6v6v1v1 v1v5v5v2v2v4v3v3v7v7v6v6v4v1v1

9 v1v5v8v8v2v2v4v3v3v5v7v7v6v6v1v1 v1v5v8v8v2v2v4v3v3v5v7v7v6v6v4v1v1

10 v1v5v5v8v8v6v7v7v3v3v4v2v2v6v1v1 v1v5v5v8v8v6v7v7v3v3v4v2v2v6v4v1v1

11 v1v5v9v9v4v7v7v6v8v8v2v2v4v3v3v6v1v1 v1v5v9v9v4v7v7v6v8v8v5v2v2v4v3v3v6v1v1

12 v1v3v2v2v5v3v6v6v5v7v7v1v1 v1v3v2v2v5v3v6v6v5v7v7v4v1v1

Table 1: Good and very good cycles of the trees in Figure 3.

In view of Case 2, we may assume now that P = v0 · · · vr is a maximal path in T such that

T − ({v1} ∪ (NT (v1) \ {v2})) has order at least 6 and diameter at least 4. By Case 1, we may

assume that the degree of v1 is 2 or 3.

Below we consider further subtrees T (i) of T . The maximum special subforest of T (i) will

be denoted by F (i) and the set generating F (i) will be denoted by U (i). Furthermore, N (i) will

denote NT (i)(U (i)).

Case 3: The degree of v1 in T is 2.

Let T (1) = T − {v0, v1} and T (2) = T − v0.

First we assume that v2 6∈ U (1). This implies that F (1) = F and hence f(T ) = f(T (1))−4. If

D is a good cycle of T (1)T (1) of length ℓ that uses the two independent edges vavb and vcvd, then

we may assume that v1 is adjacent to va and vb. Replacing vavb with vav1vb or with vav1v1v0v0vb

and/or replacing vcvd with vcv0vd, allows to construct good cycles of TT of lengths ℓ+1, ℓ+2,

12
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and ℓ + 4. Note that, if D is very good, then also the constructed cycles are very good. By

induction, there are cycles C(1)− and C(1) in T (1)T (1) such that (T (1), F (1), U (1), C(1)−, C(1)) is

good. Applying the extensions described above to C(1)− and C(1) implies the existence of cycles

C− and C in TT such that (T, F, U, C−, C) is good.

Next we assume that v2 ∈ U (1). For a contradiction, we assume that v1 ∈ U (2). This implies

that v2 ∈ U (1) ∩ N (2). By definition, every vertex in U (1) ∩ N (2) has at least 2 neighbors in

T (1) that belong to U (2) ∩N (1) and every vertex in U (2) ∩N (1) has at least 2 neighbors in T (1)

that belong to U (1) ∩ N (2), that is, v2 lies in a subgraph of T (1) of minimum degree at least

2, which is impossible because T is a tree. Hence v1 6∈ U (2). This implies that F (2) = F and

hence f(T ) = f(T (2)) − 2. By induction, there are cycles C(2)− and C(2) in T (2)T (2) such that

(T (2), F (2), U (2), C(2)−, C(2)) is good. Since v1 has degree 2 in T (2)T (2), the cycle C(2) contains

the path v1v1v2. Since C(2) is very good, it contains three independent edges, say vavb, vcvd,

and vevf , of T (2). Clearly, we may assume that v1 is not incident with vavb or vcvd. Since v1

is adjacent to all vertices in V (T (2)) \ {v2}, we may further assume that v1 is adjacent to va

and vb. Replacing the edge vavb by the path vav0vb results in a (very) good cycle C− of TT of

length f(T ) − 1. Replacing the two edges vavb and v1v1 of C(2) either by the paths vav1 and

vbv0v0v1 or by the paths vbv1 and vav0v0v1 results in a very good cycle C of TT of length f(T ),

that is, (T, F, U, C−, C) is good.

Case 4: The degree of v1 in T is 3.

Let w0 denote the neighbor of v1 distinct from v0 and v2. Let T
(3) = T − {v0, v1, w0}.

If v2 ∈ U , then v1 ∈ N and v0, w0 ∈ U . This implies that F − {v0, v1, w0} is a special

induced forest of T (3). Lemma 5 implies that V (F ) \ {v0, v1, w0} is a subset of V (F (3)) and

hence U \{v0, v1, w0} is a subset of U (3), which implies v2 ∈ U (3). This implies that T [V (F (3))∪

{v0, v1, w0}] is a special induced subforest of T . Altogether, we obtain f(T ) = f(T (3))− 6.

If v2 6∈ U , then v0, v1, w0 6∈ V (F ) and F is a special induced forest of T (3). If v2 ∈ U (3),

then, by Lemma 5, U ∪ U (3) ∪ {v0, w0} generates a special subforest of T whose order is larger

than the order of F , which is a contradiction. Hence v2 6∈ U (3), which implies that F (3) is a

special induced forest of T . Again we obtain f(T ) = f(T (3))− 6.

13
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By induction, there are two cycles C(3)− and C(3) such that (T (3), F (3), U (3), C(3)−, C(3)) is

good. Let vavb, vcvd, and vevf denote the three independent edges used by the very good cycle

C(3). Clearly, we may assume that v1 is adjacent to va and vb. Replacing vavb with vav1vb

and/or vcvd with vcv0vd and/or vevf with vew0vf in C(3) results in cycles of TT of lengths

f(T )− 5, f(T )− 4, and f(T )− 3. Replacing vavb with vav1v1v0v0vb in C(3) results in a cycle of

TT of length f(T )− 2. Replacing vavb with vaw0w0v1v0v0vb in C(3) results in a good cycle C−

of TT of length f(T )− 1. Finally, replacing vavb with vav1vb and vcvd with vcw0w0v1v0v0vd in

C(3) results in a very good cycle C of TT of length f(T ). Altogether (T, F, U, C−, C) is good,

which completes the proof.

Backwards engineering the proof of Theorem 2 allows to efficiently construct cycles of all pos-

sible lengths in the complementary prism of a given tree.

3 Graphs of Bounded Maximum Degree

We now consider the following decision problem.

Hamiltonicity of Complementary Prisms

Input: A graph G.

Question: Is GG Hamiltonian?

As pointed out by Fleischner [6], the analogous problem for ordinary prisms is hard; more

specifically, it is NP-complete to decide for a given graph whether its prism is Hamiltonian.

The situation for complementary prisms could be different. Intuitively speaking, it seems

plausible that Hamiltonian cycles of GG can be constructed by linking suitable paths in one

of G or G with the help of the other one relying on the fact that one of these two graphs is

necessarily dense. Our next results show that this intuition is valid when we force G to be

sparse by imposing an upper bound on its maximum degree.

Lemma 10. Let ∆ be an integer. For every graph G of order n ≥ 3∆(3∆+2)+1 and minimum

degree at least n− 1−∆ and for every matching M of G, there is a Hamiltonian cycle C of G

with M ⊆ E(C).
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Proof. Let G be a graph of order n ≥ 3∆(3∆+ 2)+ 1 and minimum degree at least n− 1−∆,

that is every vertex u of G is non-adjacent to at most ∆ vertices in V (G) \ {u}. Let M =

{x1y1, . . . , xryr} be a matching of G. Let V (M) = {x1, y1, . . . , xr, yr} and Z = V (G) \V (M) =

{z1, . . . , zs}.

Recall that a graph of order p and maximum degree q has an independent set of order at

least p/(q+1). It follows that there is a subset Z ′ of at least s/(∆+ 1) vertices in Z such that

Z ′ induces a clique.

Let H be the auxiliary graph on the vertex set {v1, . . . , vr} that contains an edge vivj if and

only if G[{xi, yi, xj , yj}] = K4. By construction, H has minimum degree at least r − 1 − 2∆

and thus, it has a clique of order at least r/(2∆ + 1). It follows that there is a set M ′ of at

least 2r/(2∆ + 1) edges in M such that V (M ′) induces a clique.

Hence, if n ≥ 3∆(3∆+2)+ 1, the graph G contains a cycle C of length ℓ with ℓ > 3∆ such

that for every vertex u on C that belongs to V (M), the edge in M incident with u belongs

to C.

If ℓ < n, then there is either an edge xy ∈ M with x, y 6∈ V (C) or a vertex z ∈ Z with

z 6∈ V (C). In the first case, let N denote the set of neighbors of x on C. Clearly, |N | ≥ ℓ−∆.

Since M is a matching, every vertex u in N has a neighbor denoted by p(u) such that the edge

up(u) belongs to C but not to M . There is a subset N ′ of N with |N ′| ≥ |N |/2 such that for

distinct vertices u and v in N ′, the vertices p(u) and p(v) are distinct. Since (ℓ −∆)/2 > ∆,

there is some u in N ′ such that y is adjacent to p(u). Now the cycle C can be extended by

replacing the edge up(u) with the path uxyp(u). In the second case that there is a vertex z ∈ Z

with z 6∈ V (C), a similar argument shows that the cycle can be extended.

Theorem 11. The decision problem Hamiltonicity of Complementary Prisms restricted

to instance graphs of maximum degree ∆ and order n ≥ 3∆(3∆ + 2) + 1 can be solved in

polynomial time.

Proof. Let G be a graph of maximum degree ∆ and order n ≥ 3∆(3∆ + 2) + 1. If C is a

Hamiltonian cycle of GG, then the intersection C ∩G is a factor of G in which all components

are paths of length at least 1. Conversely, let G have a factor H in which all components are
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paths of length at least 1. For every path Pi in H between some vertices xi and yi, we add to

G the edge xiyi to form the graph G
+
. Clearly, the added edges form a matching M of G

+
and

G
+
has minimum degree at least n− 1−∆. Therefore, if n ≥ 3∆(3∆+2)+ 1, then Lemma 10

implies the existence of a Hamiltonian cycle C of G
+
with M ⊆ E(C). Replacing each edge xiyi

in C with the path xiPiyi results in a Hamiltonian cycle of GG. Altogether this implies that for

n ≥ 3∆(3∆+ 2) + 1, GG is Hamiltonian if and only if G has a factor in which all components

are paths of length at least 1. Note that such a factor exists if and only if G has a factor F

in which every vertex has degree 1 or 2. By observations of Lovász [13] and Tutte [16, 17],

such a factor exists if and only if some auxiliary graph whose order is polynomially bounded

in n has a perfect matching. Altogether, if n is sufficiently large, then Hamiltonicity of

Complementary Prisms can be solved using Edmonds’ maximum matching algorithm [5],

and if n is not sufficiently large, then it can be solved by brute force.

One of the most interesting open problems related to complementary prisms concerns the

complexity of Hamiltonicity of Complementary Prisms.
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