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Abstract

For an integer £ at least 3, we prove that if G is a graph containing no two vertex-
disjoint circuits of length at least ¢, then there is a set X of at most gf + % vertices that
intersects all circuits of length at least £. Our result improves the bound 2¢ + 3 due to
Birmelé, Bondy, and Reed (The Erdds-Pésa property for long circuits, Combinatorica 27
(2007), 135-145) who conjecture that ¢ vertices always suffice.
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1 Introduction

A family F of graphs is said to have the Erdds-Pdsa property if there is a function fr: N — N
such that for every graph G and every k € N, either G contains £k vertex-disjoint subgraphs
that belong to F or there is a set X of at most fz(k) vertices of G such that G — X has no
subgraph that belongs to F. The origin of this notion is [3] where Erdés and Pdsa prove that
the family of all circuits has this property.

Let ¢ be an integer at least 3. Let F, denote the family of circuits of length at least £. In [2]
Birmelé, Bondy, and Reed show that F; has the Erdds-Pésa property with

fr,(k) < 130(k—1)(k—2)+ (20 +3)(k— 1), (1)

which improves an earlier doubly exponential bound on fz, (k) obtained by Thomassen [5]. The
main contribution of Birmelé, Bondy, and Reed [2] is to prove (1) for k = 2, that is, to show

fr(2) < 20+3, (2)

For k > 3, an inductive argument allows to deduce (1) from (2).
Birmelé, Bondy, and Reed [2] conjecture that

fr(2) < ¢, (3)



that is, for every graph G containing no two vertex-disjoint circuits of length at least ¢, there
is a set X of at most ¢ vertices such that G — X has no circuit of length at least ¢. In view of
the complete graph of order 2¢ — 1, (3) would be best possible. For ¢ = 3, (3) was shown by
Lovész [4] and for ¢ € {4,5}, (3) was shown by Birmelé [1].

Our contribution in the present paper is the following result.

Theorem 1 Let ¢ be an integer at least 3. Let G be a graph containing no two vertez-disjoint
circuits of length at least £.

There is a set X of at most %E + 2—29 vertices that intersects all circuits of length at least ¢,
that s,

5, 29
2) < = —.
While Theorem 1 is a nice improvement of (2), for k& > 3, the above-mentioned inductive
argument still leads to an estimate of the form fz,(k) = O(¢k?).
The rest of this paper is devoted to the proof of Theorem 1.

2 Proof of Theorem 1

With respect to notation and terminology we follow [2] and recall some specific notions. All
graphs are finite, simple, and undirected. We abbreviate vertex-disjoint as disjoint. If A and
B are sets of vertices of a graph G, then an (A, B)-pathis a path P in G between a vertex in
A and a vertex in B such that no internal vertex of P belongs to AU B. If P is a path and x
and y are vertices of P, then P[z,y| denotes the subpath of P between x and y. Similarly, is C'
is a circuit endowed with an orientation and = and y are vertices of C, then C[z,y| denotes the
segment of C' from x to y following the orientation of C'. In all figures of circuits the orientations
will be counterclockwise.

We fix an integer ¢ at least 3 and call a circuit of length at least ¢ long.

If C'is a circuit and P and P’ are disjoint (V(C'),V(C))-paths such that P is between u
and v and P’ is between «’ and v’, then

e P and P’ are called parallel (with respect to C') if u,u/,v',v appear in the given cyclic
order on C' and

e P and P’ are called crossing (with respect to C') if u,u',v,v" appear in the given cyclic
order on C.

See Figure 1.

In the proof of Theorem 1 below we consider three cases according to the length L of a
shortest long circuit. If L is less than 3¢/2, the result is trivial. For L between 3¢/2 and 2¢ the
following lemma implies the desired bound. Finally, for L larger than 2/, Lemma 3 implies the

desired bound.

Lemma 2 Let G be a graph containing no two disjoint long circuits.
If the shortest long circuit of G has length L with L > 3 ([%ﬂ — 2), then there is a set X
of at most %L + 0+ 1—34 vertices that intersects all long circuits.
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Figure 1: Parallel and crossing pairs of paths.

Proof: Let C' be a shortest long circuit of G. We endow C with an orientation. We decompose

C into 6 cyclically consecutive and internally disjoint segments C1,. .., Cg such that C, Cs,

and C5 have length %ﬂ — 2 and Cy, Cy, and Cg have lengths between EL - (Eﬂ - 2)} and

%L — (Eﬂ — 2)} + 1, that is, the six segments cover all of C' and C; and C;,; overlap in
exactly one vertex for every i € [6] where we identify indices modulo 6.

Let X; = V(Cy) UV(C3) UV(C5). See the left part of Figure 2.
Let ¢ € [6] be even. Let P; denote the set of (V(C;), V(Ciis))-path in G — (X; UV (Ciy4)). The
choice of C implies that every path P in P; has length at least %E; otherwise P together with a
segment of C' avoiding V(C;41) forms a long circuit that is shorter than C'. See the right part of
Figure 2. This implies that for every path P in P;, P together with a segment of C' containing
V(Ciy1) forms a long circuit.

Let P =Py U P, U Pg. Since G has no two disjoint long circuits, it follows that P contains
no two disjoint parallel paths and no four disjoint crossing paths. See Figure 3.
Let X, be a smallest set of vertices separating V(Cy) and V(Cy) UV (Cg) in G — X;. Let X3
be a smallest set of vertices separating V' (Cy) and V(Cg) in G — (X; U X3). By the above
observations and Menger’s theorem, |X,| < 3 and | X3| < 3.

There is some even j € [6] such that in G — (X; U Xy U X3), all long circuits intersect C
only in V(C}); otherwise there is a (V(C;), V(Cit2))-path in G — (X7 U Xy U X3) for some even
i € [6]. This implies that X; U X, U X3 U V/(C;) intersects all long circuits of G. Since

IXiUXo UX3UV(C))| < 3(%4 —2) +3+3+ EL— (EEW —2)} +1

1 14
< - L4+10+—
= 3 + £+ 3

we obtain the desired result. [

Lemma 3 Let G be a graph containing no two disjoint long circuits.
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Figure 2: On the left the six segments of C' and the set X in bold. On the right a long circuit
formed by a (V' (Csy), V(Cy))-path between u and v in G — (X7 U V(Cy)).

If the shortest long circuit of G has length at least 20 — 3, then there is a set X of at most
%E + ? vertices that intersects all long circuits.

Proof: Let C' be shortest long circuit of G. Let L denote the length of C'. We endow C' with
an orientation.

As in [2], a path between two vertices x and y of C that is internally disjoint from C' is
called long, if the segments C[z,y] and Cly, ] both have length at least /.

Claim A FEvery long path has length at least ¢ — 1.

Proof of Claim A: Let P be a long path between two vertices  and y of C. Let Lp denote the
length of P. We may assume that C[z,y] is at least as long as C|y, x]. Since Cz, y| has length
at least £ — 1, the union of P and C|[z,y]| is a long circuit. Since this circuit has length at least
L, the length of P is at least the length of Cly,z], that is, Lp > 1¢. Now it follows that the
union of P with Cly, x] is also a long circuit of length at most é + Lp. Since this is at least L,
we obtain Lp > é, that is, Lp > ¢ — 1. I

Choose a long circuit D of G distinct from C' and a segment Clz,y] of C' such that C[z,y]
contains V(C) NV (D) and has minimum possible length. Note that z,y € V(C) N V(D).
We consider two cases.

Case 1z # y.

Let X; denote the set of Eﬂ — 1 vertices immediately preceeding = and let X, denote the
set of [$¢] — 1 vertices immediately following y. Let A = V(C) \ (X; UX, U V(C[z,y])) and
B =V(Clz,y]). See Figure 4.

In G—(X1UXy), there are no two disjoint parallel (A, B)-paths and no four disjoint crossing
(A, B)-paths; otherwise there would be two disjoint long circuits. Hence, by Menger’s theorem,
there is a set X3 of at most 3 vertices separating A and B in G — (X; U X5).
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Figure 3: Two disjoint long circuits formed by two disjoint parallel pathsin P or by four disjoint
crossing paths in P.

The circuit D uniquely decomposes into a set P of at least two (B, B)-paths of length at
least 1. Note that P contains either no, or one, or two paths between = and y, depending on
the intersection of C' and D.

Claim B If P contains a path P between x and y, then in G — (X; U Xy U X3), there are at
most [+0] + 1 disjoint (A, V(P))-paths.
Proof of Claim B: For contradiction, we assume that there are at least (%ﬂ + 2 such paths.
Let Py, ..., P, be an ordering of the paths according to their endpoints on Cfy, z|. For i € [k],
let P; be between x; € A and y; € V(P). Let Cp denote the circuit P U Cy, z|. See Figure 4.
If two of these paths, say P, and P;, are parallel with respect to Cp, then G — (X; U X»)
contains the two parallel (A, B)-paths P; U Ply;,y] and P; U P[y;, x], which is a contradiction.
See the left part of Figure 4.
Hence all these paths are crossing respect to Cp. Now

C' = P, U Py, 2| UCplzg, z] U P, U Py, y] U Cly, 1]
is a long circuit containing X; and Xs. Furthermore, since k — 2 > %E,
PyUCP[y2, Ye—1] U Proq U Oy, 711

is a long circuit that is disjoint from C”, which is a contradiction. See the right part of Figure
4. 0O

Claim C If P contains two paths, say P and P', between x and y, then in G — (X; U XU X3),
there are at most [30] + 1 disjoint (A, V(D))-paths.

Proof of Claim C: Note that in this case, D decomposes into exactly two paths between x and

y, that is, V(D) NV(C) = {x,y} and P = {P, P'}.
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Figure 4: Two disjoint parallel (A, V(P))-paths P, and P; in G — (X3 U X5 U X3) and four
disjoint crossing (A, V(P))-paths Py, Ps, Py_1, and P, in G — (X; U Xy U X3).

For contradiction, we assume that there are at least [$€] + 2 disjoint (A, V(D))-paths
G — (X;UX,UX3). Claim B implies that there are two disjoint paths, one that is a (A, V(P))-
path and one that is a (A, V(P'))-path. Since both paths aveid x and y, the graph G—(X;UX5)

contains two parallel (A, B)-paths, which is a contradiction. O

Claim D If P is a path in P that is not a path between x and y, then in G — (X; U Xy U X3),
there are at most 3 disjoint (A, V (P))-paths.

Proof of Claim D: Let the path P be between 2’ and vy’ such that x, 2’, 1y, y appear in the given
order on Clz,y]. See Figure 5. If the length of P isat least £ — 1, then P together with Clz’, ']
forms a long circuit D’ such that V(D) N V(C) is contained in a segment of C' that is strictly
smaller then C[z,y], which contradicts the choice of D and C|x,y]. Hence the length of P is
at most ¢ — 2.

Let @ be a (A, V(P))-path in G— (X3 UX,UXj) of length Ly between v € A and v € V(P).
See Figure 5. We may assume that Pfv, 2'] is at most as long as P[v, 4], that is, P[v, 2] has
length at most 3¢ — 1. QU P[v,a’] is a long path of length at most Lg + 3¢ — 1. By Claim A,
this length is at least ¢ — 1, which implies Lg > %E.

For contradiction, we assume now that there are four disjoint (A, V(P))-paths in G — (X; U
X U X3). By the previous observation, all these paths are of length at least %E. If two of
these paths are parallel with respect to the circuit PUCTy’, 2'], then there are two disjoint long
circuits, one containing X; and one containing X,. If all four of these paths are crossing with
respect to the circuit PUC|y’, 2'], then there are two disjoint long circuits avoiding X; and Xs;
similarly as in the right part of Figure 3. These contradictions complete the proof. [

Claim E If Py, ..., Py are four distinct paths in P that are no paths between x and y, then in
G —(X1UX,UXj3), there are no four disjoint paths Q1, . .., Q4 such that Q; is a (A, V(P;))-path
for i € [4].

Proof of Claim E: For contradiction, we assume that such paths exist. Since none of the four
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Figure 5: A (A, V(P))-path in G — (X; U X5 U X3) between v € A and v € V(P).

paths Py, ..., Py is between x and y, the union of all four paths is either a forest or equal to D.
In the latter case, we may assume that P; and P, intersect in x.

In the first case we can select four disjoint (A, B)-paths Ry,..., Ry in G — (X; U X3) such
that R; is a path in P; U @, for i € [4]. In the second case we can select two disjoint parallel
(A, B)-paths Ry, Ry in G — (X; U X3) such that R; is a path in P, U Q; for i € [2]. As noted
above, both cases lead to a contradiction. []

Let V; denote the set of vertices r» of D such that P contains a path between z and y that
contains r and let V5 denote the set of vertices s of D such that P contains a path not between
x and y that contains s. Clearly, V; UV, = V(D). By Claims B and C and Menger’s theorem,
there is a set X, of at most [%ﬂ + 1 vertices separating A and V; in G — (X; U Xy U X3). By
Claims D and F and Menger’s theorem, there is a set X5 of at most 9 vertices separating A
and ‘/2 in G — (X1 UX2 UXg)

Let X ={x,y} UX; UX,UX3U X, UXs.

If G — X contains a long circuit, say D’, then D’ intersects A. Since D and D’ intersect,
there is an (A, V(D))-path Pin G — X. In view of X3, P cannot end in B; in view of Xy, P
cannot end in Vi; and, in view of X5, P cannot end in V5, which is a contradiction. Hence X
intersects all long circuits. Since

X < 24X+ | Xo| + | Xs| + | Xa| + | X5
< 24 1g 1)+ 1£ 1)+3+ 1€ +1)+9
>~ 9 92 2
3 29

this completes the proof in the first case.
Case 2 z =y.

Clearly, we may assume that G — {x} contains at least one long circuit. Since every long circuit
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in G — {x} intersects D, there are (V(C'), V(D))-paths in G — {z}. We choose a (V(C),V(D))-
path Py in G —{x} between a vertex y € V(C) and a vertex z € V(D) such that the distance in
C between z and y is minimum. We may assume that Clx,y] is a shortest path in C' between
x and y. See Figure 6.

A

B

Figure 6: A (V(C),V(D))-paths in G — {x} between y € V(C) and z € V(D).

We denote the two paths in D between = and z by P| and P;. Let P, = Py U P/ for i € [2],
that is, P, and P, are two paths between x and y that have the common segment F, and are
internally disjoint from C'.

Let X, denote the set of Eﬂ — 1 vertices immediately preceeding = and let X5 denote the
set of [$¢] — 1 vertices immediately following y. Let A = V(C) \ (X; UX, U V(Clz,y])) and
B = V(C[z,y]). Note that the choice of P implies that no long circuit of G — ({z,y} UX; UX>)
intersects C' only in B.

As in Case 1, there is a set X3 of at most 3 vertices separating A and B in G — (X; U X).

Arguing as in the proof of Claim B, the graph G — (X7 U X5 U X3) contains at most Eﬂ +1
disjoint (A, V(F;))-paths for each ¢ € [2]. This implies that if G — (X; U X, U X3) contains
more than [1¢] + 1 disjoint (A4, V(P;) U V(P,))-paths, then one of these paths must end in
V(P])\ {z, z} and one of these paths must end in V' (P}) \ {z, z}. This immediately implies the
existence of two disjoint parallel (A, B)-paths in G — (X; UX5), which is a contradiction. Hence
there is a set X, of at most [3¢]+1 vertices separating A and V(P;)UV (P) in G—(X;UX,UX3).

Let X = {l‘,y}UXl UXQUXgUX4

If G — X contains a long circuit, say D', then D’ intersects A. Since D and D’ intersect,
there is an (A, V(D))-path P in G — X. In view of X3, P cannot end in z and in view of Xy,
P cannot end in V(D) \ {z}, which is a contradiction. Hence X intersects all long circuits.
Clearly, as in Case 1, we have | X| < %E + ?, which completes the proof in the second case. [J

Proof of Theorem 1: Let C' be shortest long circuit of G. Let L denote the length of C.

If L is at most 3¢+ 2, then let X = V(C). If L is larger than 2/ 4 2 but less than 20 —4,
then Lemma 2 implies the existence of a set X with the desired properties. If L is at least
20 — 3, then Lemma 3 implies the existence of a set X with the desired properties. [J
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Our main interest was to improve the factor of £ in the bound in Theorem 1 and not the additive
constant, which can easily be improved slightly.

The main open problem remains the conjectured inequality (3). Furthermore, it is unclear
whether the quadratic dependence on k in (1) is best possible. For ¢ = 3, that is, the classical
case considered by Erdds and Pésa [3], it is known that fz, (k) = O(klogk).
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