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Abstract

For an integer ℓ at least 3, we prove that if G is a graph containing no two vertex-
disjoint circuits of length at least ℓ, then there is a set X of at most 5

3
ℓ+ 29

2
vertices that

intersects all circuits of length at least ℓ. Our result improves the bound 2ℓ + 3 due to
Birmelé, Bondy, and Reed (The Erdős-Pósa property for long circuits, Combinatorica 27
(2007), 135-145) who conjecture that ℓ vertices always suffice.
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1 Introduction

A family F of graphs is said to have the Erdős-Pósa property if there is a function fF : N → N

such that for every graph G and every k ∈ N, either G contains k vertex-disjoint subgraphs
that belong to F or there is a set X of at most fF(k) vertices of G such that G − X has no
subgraph that belongs to F . The origin of this notion is [3] where Erdős and Pósa prove that
the family of all circuits has this property.

Let ℓ be an integer at least 3. Let Fℓ denote the family of circuits of length at least ℓ. In [2]
Birmelé, Bondy, and Reed show that Fℓ has the Erdős-Pósa property with

fFℓ
(k) ≤ 13ℓ(k − 1)(k − 2) + (2ℓ+ 3)(k − 1), (1)

which improves an earlier doubly exponential bound on fFℓ
(k) obtained by Thomassen [5]. The

main contribution of Birmelé, Bondy, and Reed [2] is to prove (1) for k = 2, that is, to show

fFℓ
(2) ≤ 2ℓ+ 3, (2)

For k ≥ 3, an inductive argument allows to deduce (1) from (2).
Birmelé, Bondy, and Reed [2] conjecture that

fFℓ
(2) ≤ ℓ, (3)
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that is, for every graph G containing no two vertex-disjoint circuits of length at least ℓ, there
is a set X of at most ℓ vertices such that G−X has no circuit of length at least ℓ. In view of
the complete graph of order 2ℓ − 1, (3) would be best possible. For ℓ = 3, (3) was shown by
Lovász [4] and for ℓ ∈ {4, 5}, (3) was shown by Birmelé [1].

Our contribution in the present paper is the following result.

Theorem 1 Let ℓ be an integer at least 3. Let G be a graph containing no two vertex-disjoint
circuits of length at least ℓ.

There is a set X of at most 5

3
ℓ + 29

2
vertices that intersects all circuits of length at least ℓ,

that is,

fFℓ
(2) ≤

5

3
ℓ+

29

2
.

While Theorem 1 is a nice improvement of (2), for k ≥ 3, the above-mentioned inductive
argument still leads to an estimate of the form fFℓ

(k) = O(ℓk2).
The rest of this paper is devoted to the proof of Theorem 1.

2 Proof of Theorem 1

With respect to notation and terminology we follow [2] and recall some specific notions. All
graphs are finite, simple, and undirected. We abbreviate vertex-disjoint as disjoint. If A and
B are sets of vertices of a graph G, then an (A,B)-path is a path P in G between a vertex in
A and a vertex in B such that no internal vertex of P belongs to A ∪ B. If P is a path and x
and y are vertices of P , then P [x, y] denotes the subpath of P between x and y. Similarly, is C
is a circuit endowed with an orientation and x and y are vertices of C, then C[x, y] denotes the
segment of C from x to y following the orientation of C. In all figures of circuits the orientations
will be counterclockwise.

We fix an integer ℓ at least 3 and call a circuit of length at least ℓ long.
If C is a circuit and P and P ′ are disjoint (V (C), V (C))-paths such that P is between u

and v and P ′ is between u′ and v′, then

• P and P ′ are called parallel (with respect to C) if u, u′, v′, v appear in the given cyclic
order on C and

• P and P ′ are called crossing (with respect to C) if u, u′, v, v′ appear in the given cyclic
order on C.

See Figure 1.
In the proof of Theorem 1 below we consider three cases according to the length L of a

shortest long circuit. If L is less than 3ℓ/2, the result is trivial. For L between 3ℓ/2 and 2ℓ the
following lemma implies the desired bound. Finally, for L larger than 2ℓ, Lemma 3 implies the
desired bound.

Lemma 2 Let G be a graph containing no two disjoint long circuits.
If the shortest long circuit of G has length L with L ≥ 3

(⌈

1

2
ℓ
⌉

− 2
)

, then there is a set X
of at most 1

3
L+ ℓ+ 14

3
vertices that intersects all long circuits.
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Figure 1: Parallel and crossing pairs of paths.

Proof: Let C be a shortest long circuit of G. We endow C with an orientation. We decompose
C into 6 cyclically consecutive and internally disjoint segments C1, . . . , C6 such that C1, C3,
and C5 have length

⌈

1

2
ℓ
⌉

− 2 and C2, C4, and C6 have lengths between
⌈

1

3
L−

(⌈

1

2
ℓ
⌉

− 2
)⌉

and
⌈

1

3
L−

(⌈

1

2
ℓ
⌉

− 2
)⌉

+ 1, that is, the six segments cover all of C and Ci and Ci+1 overlap in
exactly one vertex for every i ∈ [6] where we identify indices modulo 6.

Let X1 = V (C1) ∪ V (C3) ∪ V (C5). See the left part of Figure 2.
Let i ∈ [6] be even. Let Pi denote the set of (V (Ci), V (Ci+2))-path in G− (X1∪V (Ci+4)). The
choice of C implies that every path P in Pi has length at least 1

2
ℓ; otherwise P together with a

segment of C avoiding V (Ci+1) forms a long circuit that is shorter than C. See the right part of
Figure 2. This implies that for every path P in Pi, P together with a segment of C containing
V (Ci+1) forms a long circuit.

Let P = P2 ∪ P4 ∪ P6. Since G has no two disjoint long circuits, it follows that P contains
no two disjoint parallel paths and no four disjoint crossing paths. See Figure 3.
Let X2 be a smallest set of vertices separating V (C2) and V (C4) ∪ V (C6) in G − X1. Let X3

be a smallest set of vertices separating V (C4) and V (C6) in G − (X1 ∪ X2). By the above
observations and Menger’s theorem, |X2| ≤ 3 and |X3| ≤ 3.

There is some even j ∈ [6] such that in G − (X1 ∪ X2 ∪ X3), all long circuits intersect C
only in V (Cj); otherwise there is a (V (Ci), V (Ci+2))-path in G− (X1 ∪X2 ∪X3) for some even
i ∈ [6]. This implies that X1 ∪X2 ∪X3 ∪ V (Cj) intersects all long circuits of G. Since

|X1 ∪X2 ∪X3 ∪ V (Cj)| ≤ 3

(⌈

1

2
ℓ

⌉

− 2

)

+ 3 + 3 +

⌈

1

3
L−

(⌈

1

2
ℓ

⌉

− 2

)⌉

+ 1

≤
1

3
L+ ℓ+

14

3

we obtain the desired result. �

Lemma 3 Let G be a graph containing no two disjoint long circuits.

3
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Figure 2: On the left the six segments of C and the set X in bold. On the right a long circuit
formed by a (V (C2), V (C4))-path between u and v in G− (X1 ∪ V (C6)).

If the shortest long circuit of G has length at least 2ℓ− 3, then there is a set X of at most
3

2
ℓ+ 29

2
vertices that intersects all long circuits.

Proof: Let C be shortest long circuit of G. Let L denote the length of C. We endow C with
an orientation.

As in [2], a path between two vertices x and y of C that is internally disjoint from C is
called long, if the segments C[x, y] and C[y, x] both have length at least 1

2
ℓ.

Claim A Every long path has length at least ℓ− 1.

Proof of Claim A: Let P be a long path between two vertices x and y of C. Let LP denote the
length of P . We may assume that C[x, y] is at least as long as C[y, x]. Since C[x, y] has length
at least ℓ− 1, the union of P and C[x, y] is a long circuit. Since this circuit has length at least
L, the length of P is at least the length of C[y, x], that is, LP ≥ 1

2
ℓ. Now it follows that the

union of P with C[y, x] is also a long circuit of length at most L
2
+LP . Since this is at least L,

we obtain LP ≥ L
2
, that is, LP ≥ ℓ− 1. �

Choose a long circuit D of G distinct from C and a segment C[x, y] of C such that C[x, y]
contains V (C) ∩ V (D) and has minimum possible length. Note that x, y ∈ V (C) ∩ V (D).

We consider two cases.

Case 1 x 6= y.

Let X1 denote the set of
⌈

1

2
ℓ
⌉

− 1 vertices immediately preceeding x and let X2 denote the
set of

⌈

1

2
ℓ
⌉

− 1 vertices immediately following y. Let A = V (C) \ (X1 ∪X2 ∪ V (C[x, y])) and
B = V (C[x, y]). See Figure 4.

In G−(X1∪X2), there are no two disjoint parallel (A,B)-paths and no four disjoint crossing
(A,B)-paths; otherwise there would be two disjoint long circuits. Hence, by Menger’s theorem,
there is a set X3 of at most 3 vertices separating A and B in G− (X1 ∪X2).

4
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Figure 3: Two disjoint long circuits formed by two disjoint parallel paths in P or by four disjoint
crossing paths in P.

The circuit D uniquely decomposes into a set P of at least two (B,B)-paths of length at
least 1. Note that P contains either no, or one, or two paths between x and y, depending on
the intersection of C and D.

Claim B If P contains a path P between x and y, then in G − (X1 ∪X2 ∪ X3), there are at
most

⌈

1

2
ℓ
⌉

+ 1 disjoint (A, V (P ))-paths.

Proof of Claim B: For contradiction, we assume that there are at least
⌈

1

2
ℓ
⌉

+ 2 such paths.
Let P1, . . . , Pk be an ordering of the paths according to their endpoints on C[y, x]. For i ∈ [k],
let Pi be between xi ∈ A and yi ∈ V (P ). Let CP denote the circuit P ∪ C[y, x]. See Figure 4.

If two of these paths, say Pi and Pj, are parallel with respect to CP , then G − (X1 ∪ X2)
contains the two parallel (A,B)-paths Pi ∪ P [yi, y] and Pj ∪ P [yj, x], which is a contradiction.
See the left part of Figure 4.

Hence all these paths are crossing respect to CP . Now

C ′ = P1 ∪ P [y1, x] ∪ CP [xk, x] ∪ Pk ∪ P [yk, y] ∪ C[y, x1]

is a long circuit containing X1 and X2. Furthermore, since k − 2 ≥ 1

2
ℓ,

P2 ∪ CP [y2, yk−1] ∪ Pk−1 ∪ C[x2, xk−1]

is a long circuit that is disjoint from C ′, which is a contradiction. See the right part of Figure
4. �

Claim C If P contains two paths, say P and P ′, between x and y, then in G− (X1∪X2∪X3),
there are at most

⌈

1

2
ℓ
⌉

+ 1 disjoint (A, V (D))-paths.

Proof of Claim C: Note that in this case, D decomposes into exactly two paths between x and
y, that is, V (D) ∩ V (C) = {x, y} and P = {P, P ′}.

5
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Figure 4: Two disjoint parallel (A, V (P ))-paths Pi and Pj in G − (X1 ∪ X2 ∪ X3) and four
disjoint crossing (A, V (P ))-paths P1, P2, Pk−1, and Pk in G− (X1 ∪X2 ∪X3).

For contradiction, we assume that there are at least
⌈

1

2
ℓ
⌉

+ 2 disjoint (A, V (D))-paths
G− (X1∪X2∪X3). Claim B implies that there are two disjoint paths, one that is a (A, V (P ))-
path and one that is a (A, V (P ′))-path. Since both paths avoid x and y, the graph G−(X1∪X2)
contains two parallel (A,B)-paths, which is a contradiction. �

Claim D If P is a path in P that is not a path between x and y, then in G− (X1 ∪X2 ∪X3),
there are at most 3 disjoint (A, V (P ))-paths.

Proof of Claim D: Let the path P be between x′ and y′ such that x, x′, y′, y appear in the given
order on C[x, y]. See Figure 5. If the length of P is at least ℓ−1, then P together with C[x′, y′]
forms a long circuit D′ such that V (D′) ∩ V (C) is contained in a segment of C that is strictly
smaller then C[x, y], which contradicts the choice of D and C[x, y]. Hence the length of P is
at most ℓ− 2.

Let Q be a (A, V (P ))-path in G−(X1∪X2∪X3) of length LQ between u ∈ A and v ∈ V (P ).
See Figure 5. We may assume that P [v, x′] is at most as long as P [v, y′], that is, P [v, x′] has
length at most 1

2
ℓ− 1. Q ∪ P [v, x′] is a long path of length at most LQ + 1

2
ℓ− 1. By Claim A,

this length is at least ℓ− 1, which implies LQ ≥ 1

2
ℓ.

For contradiction, we assume now that there are four disjoint (A, V (P ))-paths in G− (X1∪
X2 ∪ X3). By the previous observation, all these paths are of length at least 1

2
ℓ. If two of

these paths are parallel with respect to the circuit P ∪C[y′, x′], then there are two disjoint long
circuits, one containing X1 and one containing X2. If all four of these paths are crossing with
respect to the circuit P ∪C[y′, x′], then there are two disjoint long circuits avoiding X1 and X2;
similarly as in the right part of Figure 3. These contradictions complete the proof. �

Claim E If P1, . . . , P4 are four distinct paths in P that are no paths between x and y, then in
G−(X1∪X2∪X3), there are no four disjoint paths Q1, . . . , Q4 such that Qi is a (A, V (Pi))-path
for i ∈ [4].

Proof of Claim E: For contradiction, we assume that such paths exist. Since none of the four

6
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Figure 5: A (A, V (P ))-path in G− (X1 ∪X2 ∪X3) between u ∈ A and v ∈ V (P ).

paths P1, . . . , P4 is between x and y, the union of all four paths is either a forest or equal to D.
In the latter case, we may assume that P1 and P2 intersect in x.

In the first case we can select four disjoint (A,B)-paths R1, . . . , R4 in G − (X1 ∪X2) such
that Ri is a path in Pi ∪ Qi for i ∈ [4]. In the second case we can select two disjoint parallel
(A,B)-paths R1, R2 in G − (X1 ∪ X2) such that Ri is a path in Pi ∪ Qi for i ∈ [2]. As noted
above, both cases lead to a contradiction. �

Let V1 denote the set of vertices r of D such that P contains a path between x and y that
contains r and let V2 denote the set of vertices s of D such that P contains a path not between
x and y that contains s. Clearly, V1 ∪ V2 = V (D). By Claims B and C and Menger’s theorem,
there is a set X4 of at most

⌈

1

2
ℓ
⌉

+ 1 vertices separating A and V1 in G− (X1 ∪X2 ∪X3). By
Claims D and E and Menger’s theorem, there is a set X5 of at most 9 vertices separating A
and V2 in G− (X1 ∪X2 ∪X3).

Let X = {x, y} ∪X1 ∪X2 ∪X3 ∪X4 ∪X5.
If G − X contains a long circuit, say D′, then D′ intersects A. Since D and D′ intersect,

there is an (A, V (D))-path P in G−X . In view of X3, P cannot end in B; in view of X4, P
cannot end in V1; and, in view of X5, P cannot end in V2, which is a contradiction. Hence X
intersects all long circuits. Since

|X| ≤ 2 + |X1|+ |X2|+ |X3|+ |X4|+ |X5|

≤ 2 +

(⌈

1

2
ℓ

⌉

− 1

)

+

(⌈

1

2
ℓ

⌉

− 1

)

+ 3 +

(⌈

1

2
ℓ

⌉

+ 1

)

+ 9

≤
3

2
ℓ+

29

2
,

this completes the proof in the first case.

Case 2 x = y.

Clearly, we may assume that G−{x} contains at least one long circuit. Since every long circuit

7
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in G−{x} intersects D, there are (V (C), V (D))-paths in G−{x}. We choose a (V (C), V (D))-
path P0 in G−{x} between a vertex y ∈ V (C) and a vertex z ∈ V (D) such that the distance in
C between x and y is minimum. We may assume that C[x, y] is a shortest path in C between
x and y. See Figure 6.

x y

D

A

B

X2X1 z

Figure 6: A (V (C), V (D))-paths in G− {x} between y ∈ V (C) and z ∈ V (D).

We denote the two paths in D between x and z by P ′

1 and P ′

2. Let Pi = P0 ∪ P ′

i for i ∈ [2],
that is, P1 and P2 are two paths between x and y that have the common segment P0 and are
internally disjoint from C.

Let X1 denote the set of
⌈

1

2
ℓ
⌉

− 1 vertices immediately preceeding x and let X2 denote the
set of

⌈

1

2
ℓ
⌉

− 1 vertices immediately following y. Let A = V (C) \ (X1 ∪X2 ∪ V (C[x, y])) and
B = V (C[x, y]). Note that the choice of P0 implies that no long circuit of G−({x, y}∪X1∪X2)
intersects C only in B.

As in Case 1, there is a set X3 of at most 3 vertices separating A and B in G− (X1 ∪X2).
Arguing as in the proof of Claim B, the graph G− (X1∪X2∪X3) contains at most

⌈

1

2
ℓ
⌉

+1
disjoint (A, V (Pi))-paths for each i ∈ [2]. This implies that if G − (X1 ∪ X2 ∪ X3) contains
more than

⌈

1

2
ℓ
⌉

+ 1 disjoint (A, V (P1) ∪ V (P2))-paths, then one of these paths must end in
V (P ′

1) \ {x, z} and one of these paths must end in V (P ′

2) \ {x, z}. This immediately implies the
existence of two disjoint parallel (A,B)-paths in G−(X1∪X2), which is a contradiction. Hence
there is a setX4 of at most

⌈

1

2
ℓ
⌉

+1 vertices separating A and V (P1)∪V (P2) inG−(X1∪X2∪X3).
Let X = {x, y} ∪X1 ∪X2 ∪X3 ∪X4.
If G − X contains a long circuit, say D′, then D′ intersects A. Since D and D′ intersect,

there is an (A, V (D))-path P in G−X . In view of X3, P cannot end in x and in view of X4,
P cannot end in V (D) \ {x}, which is a contradiction. Hence X intersects all long circuits.
Clearly, as in Case 1, we have |X| ≤ 3

2
ℓ+ 29

2
, which completes the proof in the second case. �

Proof of Theorem 1: Let C be shortest long circuit of G. Let L denote the length of C.
If L is at most 5

3
ℓ+ 29

2
, then let X = V (C). If L is larger than 5

3
ℓ+ 29

2
but less than 2ℓ− 4,

then Lemma 2 implies the existence of a set X with the desired properties. If L is at least
2ℓ− 3, then Lemma 3 implies the existence of a set X with the desired properties. �
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Our main interest was to improve the factor of ℓ in the bound in Theorem 1 and not the additive
constant, which can easily be improved slightly.

The main open problem remains the conjectured inequality (3). Furthermore, it is unclear
whether the quadratic dependence on k in (1) is best possible. For ℓ = 3, that is, the classical
case considered by Erdős and Pósa [3], it is known that fF3

(k) = O(k log k).
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