
5 J
un

e 2
01

3

DRAFT

Cycle Lengths of Hamiltonian Pℓ-free Graphs

Dirk Meierling, Dieter Rautenbach
Institut für Optimierung und Operations Research, Ulm University, Ulm, Germany

dirk.meierling@uni-ulm.de, dieter.rautenbach@uni-ulm.de

Abstract

For an integer ℓ at least three, we prove that every Hamiltonian Pℓ-free graph G on

n > ℓ vertices has cycles of at least 2
ℓn− 1 different lengths. For small values of ℓ, we can

improve the bound as follows. If 4 ≤ ℓ ≤ 7, then G has cycles of at least 1
2n− 1 different

lengths, and if ℓ is 4 or 5 and n is odd, then G has cycles of at least n − ℓ + 2 different

lengths.
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1 Introduction

In this paper we study the cycle spectrum of finite undirected graphs without loops or multiple
edges and use standard notation and terminology as summarized in Subsection 1.1 below. The
cycle spectrum C(G) of a graph G is the set of its cycle lengths and the cardinality of the cycle
spectrum of G is denoted by c(G).

Bondy’s [2] so-called meta-conjecture states that essentially every non-trivial sufficient con-
dition for the existence of a Hamiltonian cycle also implies pancyclicity, up to some well de-
scribed exceptions. Bondy himself proved for example that every graph on n vertices that
satisfies Ore’s condition [9], that is, every pair of non-adjacent vertices has degree sum at
least n, is pancyclic or the complete bipartite graph Kn/2,n/2. Using a result of Schmeichel
and Hakimi [10], Bauer and Schmeichel [1] gave proofs that, with small families of exceptions,
the conditions for Hamiltonian cycles due to Bondy [3], Chvátal [4], and Fan [5] also imply
pancyclicity. Further results of this type may be found in [1, 10].

Conditions that are not strong enough to imply pancyclicity may still be strong enough
to force a large cycle spectrum. At the 1999 conference “Paul Erdős and His Mathematics”,
Jacobson and Lehel asked how small the cycle spectrum of a graph G can be, when G only
satisfies a relaxed version of a sufficient condition for the existence of a Hamiltonian cycle but
is known to be Hamiltonian itself. Specifically, for an integer k with 3 ≤ k ≤ ⌈n/2⌉ − 1,
they asked for the minimum cycle spectrum of a k-regular Hamiltonian graph on n vertices.
Note that Bondy’s result implies that all k-regular graphs of order n with k ≥ ⌈n/2⌉, except
for Kn/2,n/2, are pancyclic. Furthermore, 2-regular Hamiltonian graphs have exactly one cycle
length. During the SIAM Meeting on Discrete Mathematics in 2002, Jacobson announced that
he, Gould, and Pfender proved that every k-regular Hamiltonian graph G on n vertices has
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cycles of at least ck
√
n different lengths where ck > 0 for k ≥ 3. Milans et al. [6] strengthened

the result by showing that every Hamiltonian graph with n vertices and m edges has cycles of
at least

√
m− n− ln(m− n)− 1 different lengths. In [7] Marczyk and Woźniak determine the

minimum size of the cycle spectrum of Hamiltonian graphs in terms of their maximum degree.
Recently, Müttel et al. [8] proved that cubic claw-free Hamiltonian graphs of order n > 12 have
cycles of at least 1

4
n+ 3 different lengths where a claw is a complete bipartite graph K1,3.

If Q is a cycle or a path in a graph G, then a chord of Q in G is an edge of G that does not
lie in Q but whose endvertices are in Q. The length of a chord xy of Q is equal to distQ(x, y).
Naturally, the existence, lengths, and distribution of chords of a Hamiltonian cycle is important
for the existence of further cycles. The conditions mentioned above, such as degree conditions,
regularity conditions, conditions on the size, or claw-freeness, all imply the existence of many
chords and partly also concern their lengths and distribution.

In the present paper we consider Pℓ-freeness as another natural condition that forces many
well distributed chords in a Hamiltonian cycle. For an integer ℓ at least 3, a graph is Pℓ-free if
it contains no path of order ℓ as an induced subgraph.

Our results are as follows.

Theorem 1. If G is a Hamiltonian Pℓ-free graph on n vertices and n > ℓ ≥ 8, then c(G) ≥
2
ℓ
n− 1.

For small values of ℓ, we can improve this bound considerably.

Theorem 2. If G is a Hamiltonian Pℓ-free graph on n vertices with n > ℓ and 4 ≤ ℓ ≤ 7, then
c(G) ≥ 1

2
n− 1.

For every even integer n, the complete bipartite graph Kn/2,n/2 is Pℓ-free for every ℓ ≥ 4
and satisfies c(Kn/2,n/2) =

1
2
n − 1. Hence Theorem 2 is best possible. If G is a graph of odd

order and ℓ is 4 or 5, then we can further improve the bound to n− ℓ+2, that is, these graphs
are essentially pancyclic.

Theorem 3. If G is a Hamiltonian P4-free graph of odd order n ≥ 5, then G is pancyclic.

Theorem 4. If G is a Hamiltonian P5-free graph of odd order n ≥ 7, then G has cycles of
lengths 4, 5, . . . , n.

Obviously, Theorem 3 is best possible. To see that the lower bound in Theorem 4 is sharp,
consider the following family of graphs. For an even integer n ≥ 6, subdivide an edge of the
complete bipartite graph Kn/2,n/2 by a new vertex v. The resulting graph has odd order n+ 1,
it is P5-free, since every path of order 5 uses at least two vertices of each of the two partite sets
of the original Kn/2,n/2, and it contains no 3-cycle, but cycles of lengths 4, 5, . . . , n.

We believe that the cycle spectrum of Hamiltonian Pℓ-free graphs is much larger than
guaranteed by Theorem 1. In view of Theorems 2 to 4 we venture to pose the following.

Conjecture 5. If G is a Hamiltonian Pℓ-free graph on n vertices, then c(G) ≥ 1
2
n− c1 and, if

n is odd, c(G) ≥ n− c2 where c1 and c2 only depend on ℓ.

After a summary of standard notation and terminology in the next subsection and some
preliminaries in Section 2, we prove our results in Section 3.
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1.1 Notation and Terminology

For a graph G, the vertex set is denoted by V (G) and the edge set by E(G). The order of
G is denoted by n(G) and its size by m(G). For a positive integer k, a graph is k-regular if
every vertex has exactly k neighbors, and a 3-regular graph is cubic. For a positive integer k,
let [k] denote the set {1, 2, . . . , k}. A path P in G of length ℓ between two vertices v0 and vℓ is
a sequence of ℓ + 1 distinct vertices P = v0v1 · · · vℓ such that vi−1vi is an edge of G for every
i ∈ [ℓ]. Similarly, a cycle C in G of length ℓ with ℓ ≥ 3, or an ℓ-cycle for short, is a sequence
C = v1v2 · · · vℓv1 such that v1v2 · · · vℓ is a path in G and vℓv1 is an edge of G. A Hamiltonian
cycle is a cycle containing all vertices of a graph and a graph having such a cycle is called
Hamiltonian. A graph on n vertices is pancyclic if its cycle spectrum is {3, 4, . . . , n}. If P is a
path and x and y are vertices of P , then P [x, y] denotes the subpath of P between x and y.
Similarly, if C is a cycle endowed with an orientation and x and y are vertices of C, then C[x, y]
denotes the segment of C from x to y following the orientation of C. For a graph G and two
vertices v and w of G, the distance distG(v, w) in G between v and w is the minimum length of
a path in G between v and w. If W ⊆ V (G), then G[W ] denotes the subgraph of G induced
by W . A graph that does not contain a graph H as an induced subgraph is called H-free.

2 Preliminaries

The observations and results in this section are frequently used to establish the base cases of
our inductive proofs in Section 3.

Let M = {vrivsi : i ∈ [k]} be a matching consisting of chords of a cycle C. If the vertices
incident with the edges in M appear on C in the cyclic order

• vr1 , vs1, vr2 , vs2, . . . , vrk , vsk , then M is independent,

• vr1 , vr2 , . . . , vrk , vsk , vsk−1
, . . . , vs1, then M is parallel, and

• vr1 , vr2 , . . . , vrk , vs1 , vs2, . . . , vsk , then M is crossing.

Similarly, pairs of chords are independent if they are incident or form an independent set of
chords. Otherwise, they are crossing. The following was observed by Müttel et al. [8].

Lemma 6 (Müttel et al. [8]). Let C be a Hamiltonian cycle of a graph G. If C has an
independent or parallel set of k chords, then c(G) ≥ k + 1, and if C has a crossing set of k
chords, then c(G) ≥ k.

The next two lemmas are obvious.

Lemma 7. Let C be a Hamiltonian cycle of a graph G on n vertices. If C has a chord vrvs of
length t, then C[vr, vs]vr and C[vs, vr]vs are non-Hamiltonian cycles of lengths t+1 and n−t+1
where t+ 1 < n− t+ 1.

Lemma 8. Let C be a Hamiltonian cycle of a graph G on n vertices. If C has two crossing
chords vr1vs1 , vr2vs2, then G has the cycles

C1 = C[vr1 , vr2 ]C[vs2, vs1 ]vr1 and C2 = C[vr1 , vs2]C[vr2 , vs1]vr1

with |V (C1)|+ |V (C2)| = n+ 4.
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Lemma 9. Let C be a Hamiltonian cycle of a graph G of even order n ≥ 8. If C has two
chords of length 1

2
n, then c(G) ≥ 3.

Proof. By Lemma 7, G has a cycles of length 1
2
n+1 and, by Lemma 8, G has cycles of length k

and n− k+4 where 4 ≤ k ≤ 1
2
n+2. If {k, n− k+4} 6⊆ {1

2
n+1, n}, then c(G) ≥ 3. Otherwise

{k, n− k + 4} ⊆ {1
2
n+ 1, n} and thus n ≤ 6, a contradiction.

Lemma 10. Let C be a Hamiltonian cycle of a graph G of order n ≥ 6. If C has two
chords vr1vs1, vr2vs2 of length t with t < 1

2
n and 3t − 1 6= n, then c(G) ≥ 4 or t = 3 and

G[{vr1 , vs1, vr2 , vs2}] = C4.

Proof. If vr1vs1 , vr2vs2 are independent, then G has cycles of length t+1, n−2(t−1), n−(t−1), n.
Since t < 1

2
n, we have t + 1 < n− (t− 1) and, since 3t− 1 6= n, we have t + 1 6= n− 2(t− 1).

It follows that c(G) ≥ 4.
So, assume that vr1vs1, vr2vs2 are crossing. By Lemma 7, G has cycles of lengths t + 1 and

n − (t − 1) with t + 1 < 1
2
n < n − (t − 1), and, by Lemma 8, G has cycles of lengths k and

n− k + 4 with k < 1
2
n+ 2 < n− k + 4.

If {k, n − k + 4} 6⊆ {t + 1, n− t + 1, n}, then c(G) ≥ 4. So, assume that {k, n− k + 4} ⊆
{t+ 1, n− t+ 1, n}. Now n− k+4 = n and either k = t+ 1 or k = n− t+ 1. If k = n− t+1,
then n− 3 = t < 1

2
n, a contradiction to n ≥ 6. Hence k = t+1 and thus k = 4 and t = 3. This

implies that G′ = G[{vr1 , vs1, vr2 , vs2}] contains a 4-cycle. If G′ has a further edge, then G has
a 3-cycle, which implies c(G) ≥ 4. This completes the proof.

Lemma 11. If G is a Hamiltonian Pℓ-free graph on n > ℓ vertices, then every Hamiltonian
cycle of G has at least two chords.

Proof. Let C = v1v2 · · · vnv1 be a Hamiltonian cycle of G. Since n ≥ ℓ + 1, we may assume
that C has the chord v1vr where 2 ≤ r ≤ n − 1. Then C[v2, vn] is a path of order n − 1 ≥ ℓ
and thus, forces a chord different from v1vr.

3 Proofs of the theorems

In this section we prove Theorems 1 to 4.

3.1 Proof of Theorem 1

The proof is by induction on n. Let C = v1v2 · · · vnv1 be a Hamiltonian cycle of G where we
identify indices modulo n.

First let ℓ < n ≤ 2ℓ. It suffices to show that c(G) ≥ 3. By Lemma 11, C has at least two
chords. If one of the chords is of length less than 1

2
n, then c(G) ≥ 3 by Lemma 7, and if C has

two chords of length 1
2
n, then c(G) ≥ 3 by Lemma 9.

Now let n > 2ℓ.
Since G is Pℓ-free, C has a chord of length at most ℓ− 1, which implies that G contains a

non-Hamiltonian cycle of length at least n− ℓ+ 1.
If G has a non-Hamiltonian cycle C ′ of length n′ ≥ n− 1

2
ℓ, then let G′ be the graph induced

by the vertices of C ′. Note that G has at least one cycle length, namely n, that does not appear
in G′. It follows, by induction, that

c(G) ≥ 1 + c(G′) ≥ 1 +
2

ℓ
n′ − 1 ≥ 1 +

2

ℓ

(

n− 1

2
ℓ

)

− 1 =
2

ℓ
n− 1.
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So, assume that every non-Hamiltonian cycle of G is shorter than n − 1
2
ℓ. This implies that

every chord of C has length greater than 1
2
ℓ+ 1.

If G has a non-Hamiltonian cycle C ′ of length n′ ≥ n − ℓ and a non-Hamiltonian cycle of
length n′′ > n′, then let G′ be the graph induced by the vertices of C ′. Note that G has at least
two cycle lengths, namely n and n′′, that do not appear in G′. It follows, by induction, that

c(G) ≥ 2 + c(G′) ≥ 2 +
2

ℓ
n′ − 1 ≥ 2 +

2

ℓ
(n− ℓ)− 1 =

2

ℓ
n− 1.

So, assume that G contains exactly one cycle length of the form n − (t − 1) in [n − ℓ, n− 1
2
ℓ)

and no cycle length in [n− t+2, n− 1]. This implies that every chord of C is either of length t
or of length at least ℓ+ 2. Note that 1

2
ℓ+ 1 < t ≤ ℓ− 1.

Let vr1vs1 be a chord of length t. Since vr1+2vr1+3 · · · vr1+ℓ+1 is a path of order ℓ and t > 1
2
ℓ+1,

there exists a chord of length t that crosses vr1vs1 . Among all such chords, let vr2vs2 be chosen
such that distC(vr1 , vr2) ≥ 2 is minimal. Note that the incident vertices appear in the cyclic
order vr1 , vr2, vs1, vs2 on C. Due to the choice of r2 and the fact that G is Pℓ-free, it follows that
|{vr1+2, vr1+2, . . . , vs2−1}| ≤ ℓ − 1. Hence, the cycle vr1vs1vs1−1 · · · vr2vs2vs2+1 · · · vr1 has length
k ≥ n − ℓ + 2 and thus, k = n − (t − 1) by assumption. Since vr1vs1 and vr2vs2 are chords of
length t, it follows that distC(vr1 , vr2) =

1
2
(t + 1). Note that if G contains the edge vr2+1vs2+1,

then vr1vs1vs1−1 · · · vr2+1vs2+1vs2+2 · · · vr1 is a cycle of length n− t− 1 ≥ n− ℓ, a contradiction.
Iteratively repeating the same reasoning for vrivsi with i ≥ 2 instead of vr1vs1, implies that

vivi+1 is a chord of C if and only if i − r1 is a multiple of 1
2
(t + 1). This also implies that n

is a multiple of 1
2
(t + 1). Let p = 2n

t+1
− 1. Since n > 2ℓ and t + 1 ≤ ℓ, we have p ≥ 4. Let

ri = r1 +
1
2
(t+ 1)(i− 1) and si = s1 +

1
2
(t+ 1)(i− 1). Note that v(si)+1 = vr(i+2)

.

Since
{

vr2ivs2i : i ∈
[⌈

1
2
p
⌉]}

is an independent set of chords, G contains cycles of lengths
n − (k − 1)(t − 1) for k ∈

[⌈

1
2
p
⌉

+ 1
]

(cycles of type 1). Furthermore, for every k ∈ [p − 1],
the paths C[vr1 , vr2] and C[vsk , vsk+1

] together with the edges in {vsivr(i+2)
: i ∈ [k − 1]} and

{vrivsi : i ∈ [k + 1]} form a cycle of length t+ 2k + 1 in G (cycles of type 2).
Since the longest cycle of type 2 has length t+2(p−1)+1 and n−(q−1)(t−1) > t+2(p−1)+1

for q − 1 < t−3
2(t−1)

(p− 1) and t−3
2(t−1)

(p− 1) <
⌈

1
2
p
⌉

, there are at least t−3
2(t−1)

(p− 1) cycles of type
1 of distinct lengths whose lengths are all larger than the lengths of all cycles of type 2. Since
the shortest cycle of type 2 has length t+3 and G has a cycle of length t+1 using exactly one
chord of length t, we have

c(G) ≥ t− 3

2(t− 1)
(p− 1) + (p− 1) + 1

=

(

3

2
− 1

t− 1

)(

2n

t + 1
− 2

)

+ 1

>

(

3

2
− 2

ℓ

)(

2n

ℓ
− 2

)

+ 1

≥
(

3

2
− 2

8

)(

2n

ℓ
− 2

)

+ 1

=
2n

ℓ
+

n

2ℓ
− 5

2
+ 1

≥ 2n

ℓ
− 1

2
,

which completes the proof. �
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3.2 Proof of Theorem 2

The proof is by induction on n. Let C = v1v2 · · · vnv1 be a Hamiltonian cycle of G where we
identify indices modulo n.

First let ℓ+ 1 ≤ n ≤ ℓ + 4. By Lemma 11, C has at least two chords. Hence, if n ∈ {5, 6},
then c(G) ≥ 2 ≥ 1

2
n−1. If n ∈ {7, 8}, then c(G) ≥ 3 ≥ 1

2
n−1 by Lemmas 7 or 9. By Lemma 7,

if C has two chords of lengths t1 < t2 =
1
2
n, then c(G) ≥ 4, and if C has two chords of lengths

t1 < t2 < 1
2
n, then c(G) ≥ 5. Therefore, in all remaining cases (ℓ = 5 and n = 9; ℓ = 6 and

n ∈ {9, 10}; ℓ = 7 and n ∈ {9, 10, 11}), we may assume that all chords of C have the same
length.

First suppose that n ∈ {9, 10}.
If all chords of C are of length 5, then n = 10 and we consider two cases depending on ℓ.

If ℓ = 6, then C has all possible chords of length 5 and thus, c(G) ≥ 4 by Lemma 6. If
ℓ = 7, then C has three crossing chords of length 5. We may assume, without loss of generality,
that v1v6, v2v7, v3v8 ∈ E(G) or v1v6, v2v7, v4v9 ∈ E(G). In both cases, G has cycles of lengths
4, 6, 8, 10.

If all chords are of length less than 5, then, by Lemma 10, we may assume v1v4 and v2v5 are
chords of C. In particular, all chords of C have length 3. Since C[v3, v9] is a path of order 7,
it induces a chord of length 3. Another application of Lemma 10 yields c(G) ≥ 4.

Next suppose that n = 11 and ℓ = 7.
If a chord of C has length at most 3, then G has a non-Hamiltonian cycle C ′ of length

n′ ≥ n− 2 = 9 and the result follows from the above remarks concerning the cases n ∈ {9, 10}.
If all chords of C have length 4, then we may assume that v1v5 ∈ E(G). Note that G

has cycles of lengths 5, 8, 11. Since C[v2, v8] and C[v3, v9] are paths of order 7, it follows that
v3v7 ∈ E(G) or v4v8 ∈ E(G) or v2v6, v5v9 ∈ E(G). In the first two cases, G has cycles of lengths
6, 9, and in the latter case, G has cycles of lengths 4, 7. It follows that c(G) ≥ 5.

If all chords of C have length 5, then C has three crossing chords of length 5. We may
assume, without loss of generality, that v1v6, v2v7, v3v8 ∈ E(G) or v1v6, v2v7, v4v9 ∈ E(G) or
v1v6, v2v8, v4v10 ∈ E(G) or v1v6, v2v8, v4v9 ∈ E(G). In the first two cases, G has cycles of lengths
4, 6, 7, 9, 11 and in the last two cases, G has cycles of lengths 5, 6, 7, 10, 11.

Now let n ≥ ℓ+ 5. Since G is Pℓ-free, C has a chord of length at most ℓ− 1.
If G has a non-Hamiltonian cycle C ′ of length n′ ≥ n− 2, then let G′ be the graph induced

by the vertices of C ′. Note that G has at least one cycle length, namely n, that does not appear
in G′. It follows, by induction, that c(G) ≥ c(G′)+1 ≥ 1

2
n′ ≥ 1

2
n−1. This completes the proof

for ℓ = 4. Furthermore, for ℓ ≥ 5, we may assume that every non-Hamiltonian cycle of G has
at most n− 3 vertices. In particular, every chord of C is of length at least 4.

If G has a non-Hamiltonian cycle C ′ of length n′ ≥ n − 4 and a non-Hamiltonian cycle of
length n′′ > n′, then let G′ be the graph induced by the vertices of C ′. Note that G has at least
two cycle lengths, namely n and n′′, that do not appear in G′. It follows, by induction, that
c(G) ≥ c(G′) + 2 ≥ 1

2
n′ + 1 ≥ 1

2
n− 1. So, assume that G contains at most one cycle length in

{n− 4, n− 3} and none in {n− 2, n− 1}.

Case 1: ℓ = 5.

Since G is P5-free, it follows that C has chords of length 4. Let vrvr+4 be a such a chord. Since
C[vr+2, vr+6] is a path of order 5, C has the chord vr+2vr+6 and vrvr+4vr+3vr+2vr+6vr+7 · · · vr is
a cycle of length n− 2, a contradiction.

6
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Case 2: ℓ = 6.

Let vrvr+t be a shortest chord of C. Since C[vr+2, vr+7] is a path of order 6, it has a chord.
If t = 5, then C has no chord of length 4. Hence, C has the chord vr+2vr+7 and thus,

contains the cycle vrvr+5vr+4vr+3vr+2vr+7vr+8 · · · vr of length n− 2, a contradiction.
If t = 4, then G has a cycle of length n − 3. It follows that C has no chord of length

5, since G has only one cycle length in {n − 4, n − 3}. Hence, G contains at least one of
{vr+2vr+6, vr+3vr+7}. In the first case, vrvr+4vr+3vr+2vr+6vr+7 · · · vr is a cycle of length n− 2, a
contradiction, and in the latter case, vrvr+4vr+3vr+7vr+8 · · · vr is a cycle of length n− 4, again
a contradiction.

Case 3: ℓ = 7.

Let vrvr+t be a shortest chord of C. Since C[vr+2, vr+8] is a path of order 7, it has a chord.
If t = 4, then G has a cycle of length n− 3. It follows that G contains no cycles of lengths

n − 4, n − 2 or n − 1 and, in particular, no chords of lengths 2, 3 or 5. Hence, C[vr+2, vr+8]
has a chord of length 4 or 6. If G has the chord vr+2vr+8, then vrvr+4vr+3vr+2vr+8vr+9 · · · vr is
a cycle of length n− 4, a contradiction. Likewise, if G has the chord vr+2vr+6 or vr+3vr+7, then
vrvr+4vr+3vr+2vr+6vr+7 · · · vr or vrvr+4vr+3vr+7vr+8 · · · vr is a cycle of length n−2, again a contra-
diction. Hence, the only chord of C[vr+2, vr+8] is vr+4vr+8. Since C[vr+1, vr+7] is a path of order
7, it has a chord of length 4 or 6 incident to vr+1. In the first case vr+1vr+5vr+4vr+8vr+9 · · · vr+1

is a cycle of length n− 4, and in the latter case vr+1vr+7vr+6vr+5vr+4vr+8vr+9 · · · vr+1 is a cycle
of length n− 2. Both possibilities contradict our assumption.

If t = 5, then G has a cycle of length n− 4. It follows that G contains no cycles of lengths
n−3, n−2 or n−1 and, in particular, no chords of lengths 2, 3 or 4. Hence, C[vr+2, vr+8] has a
chord of length 5 or 6. If G has the chord vr+2vr+8, then vrvr+5vr+4vr+3vr+2vr+8vr+9 · · · vr
is a cycle of length n − 3, a contradiction. Likewise, if G has the chord vr+2vr+7, then
vrvr+5vr+4vr+3vr+2vr+7vr+8 · · · vr is a cycle of length n − 2, again a contradiction. Hence, the
only chord of C[vr+2, vr+8] is vr+3vr+8. Since C[vr+1, vr+7] is a path of order 7, it has a chord of
length 5 or 6 incident to vr+1. In the first case vr+1vr+6vr+5vr+4vr+3vr+8vr+9 · · · vr+1 is a cycle
of length n− 2, and in the latter case vrvr+5vr+4vr+3vr+2vr+1vr+7vr+8 · · · vr is a cycle of length
n− 1. Both possibilities contradict our assumption.

If t = 6, then G contains no chords of lengths 2, 3, 4 or 5. Hence the only chord of
C[vr+2, vr+8] is vr+2vr+8. Now vrvr+6vr+5vr+4vr+3vr+2vr+8vr+9 · · · vr is a cycle of length n− 2 in
G. This final contradiction completes the proof. �

3.3 Proof of Theorem 3

The proof is by induction on n. Let C = v1v2 · · · vnv1 be a Hamiltonian cycle of G.
First let n = 5. Since C has a chord of length 3, G has cycles of lengths 3, 4, and 5.
Now let n ≥ 7. We prove that G has a cycle of length n− 1 and a cycle C ′ of length n− 2.

If G′ is the subgraph induced by the vertices of C ′, then c(G) ≥ c(G′)+2 ≥ n−2 by induction.
Since G is P4-free, C has a chord of length at most 3. If C has a chord of length 2 and a

chord of length 3, then we are done. Similarly, if C has no chords of length 3, then C has two
independent chords of length 2 and we are done. So, assume that C has no chords of length
2. This implies that G has all possible chords of length 3. Obviously, G has a cycle of length
n− 2. It remains to show that G has an (n− 1)-cycle.
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If n ≡ 1 mod 4, then v1v4v5v8v9 · · · vn−1vnv3v6v7v10v11 · · · vn−3vn−2v1 is a cycle of length
n−1. If n ≡ 3 mod 4, then v1v4v5v8v9 · · · vn−7vn−6vn−3vn−4vn−1v2v3v6v7 · · · vn−9vn−8vn−5vn−2v1
is a cycle of length n− 1. �

3.4 Proof of Theorem 4

The proof is by induction on n. Let C = v1v2 · · · vnv1 be a Hamiltonian cycle of G where we
identify indices modulo n.

First let n = 7. By Lemma 11, C has at least two chords. If C has two chords of lengths 2
and 3, then, by Lemma 7, G is pancyclic. Hence, we may assume that all chords of C have the
same length.

If all chords of C have length 2, then C has three independent chords, or a pair of indepen-
dent and a pair of crossing chords. In both cases, G is pancyclic by Lemmas 6 and 8.

If all chords of C have length 3, then C has a pair of crossing chords. If vivi+3, vi+2vi+4 ∈
E(G) for an index i ∈ [7], then, by Lemmas 7 and 8, G has cycles of lengths 4, 5, 6, 7. So, we
may assume that v1v4, v2v5 ∈ E(G) and v3v6, v3v7, v4v7 /∈ E(G). Now C[v3, v7] is an induced
path of order 5, a contradiction.

Now let n ≥ 9. We prove that G has a cycle of length n − 1 and a cycle of length n − 2,
which implies the result by induction. Since G is P5-free, C has a chord of length at most 4.

Case 1: C has a chord of length 2.

If C has two independent chords of length 2 or a chord of length 2 and a chord of length 3,
then G has cycles of lenghts n− 2 and n− 1.

If C has chords of length 2 and chords of length 4, but no chords of length 3, then G has
a cycle of length n − 1. We may assume that G has no two independent chords of length 2.
Hence we may assume that v1v3 ∈ E(G) and v2v4 /∈ E(G). Since C[v2, v6] is a path of order 5,
it follows that v2v6 ∈ E(G). Therefore v1v3v2v6v7 · · · v1 is a cycle of length n− 2.

Case 2: C has no chords of length 2, but a chord of length 3.

In this case G has a cycle of length n − 2 and it remains to show the existence of a cycle of
length n− 1.

First assume that C has a chord of length 4. If vrvr+3 is a chord of length 3, then C[vr+1, vr+5]
is a path of order 5, which implies that G contains at least one of {vr+1vr+5, vr+1vr+4, vr+2vr+5}.
Iteratively applying this observation implies that for some r, we have vrvr+3, vr+1vr+5 ∈ E(G)
or vrvr+3, vr+2vr+5, vr+2vr+6 ∈ E(G). In the first case vrvr+3vr+2vr+1vr+5 · · · vr is a cycle of
length n− 1 and in the second case vrvr+3vr+4vr+5vr+2vr+6 · · · vr is a cycle of length n− 1.

Now we assume that C has no chord of length 4. Note that, for every chord xy of C, either
C[x, y] or C[y, x] has even length. We assume that among all Hamiltonian cycles of G and all
chords, C and xy are chosen such that the path of even length among C[x, y] or C[y, x], say
C[x, y], is shortest possible. We may assume that C[x, y] = v1v2 · · · v2q+1 for some q ≥ 3. Since
G is P5-free, G contains at least one of {vn−1v2, vnv3} and at least one of {v2q−1v2q+2, v2qv2q+3}.

Consider the paths v2q−2v2q−1v2qv2q+1v1 and v4v3v2v1v2q+1. Since C has no chords of lengths 2
or 4, the choice of C and xy implies that G contains at least one of {v2q−2v2q+1, v1v2q, v1v2q−2}
and at least one of {v1v4, v2v2q+1, v4v2q+1}. If v1v2q ∈ E(G), then v2qv1v2q+1, ab ∈ {vn−2v2, vnv3},
C[b, v2q], and C[v2q+1, a] form an (n − 1)-cycle in G. By symmetry, we may assume that
v1v2q, v2v2q+1 /∈ E(G).
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If v1v4, vnv3 ∈ E(G), then C ′ = vnv3v2v1C[v4, vn] is a Hamiltonian cycle of G with the chord
v1v2q+1. Now C ′[v1, v2q+1] is of even length less than 2q, a contradiction to the choice of C and
xy.

If v1v4, vn−1v2 ∈ E(G), but vnv3 /∈ E(G), then consider the path v3v2v1v2q+1v2q of or-
der 5. Since G is P5-free, it has a chord. The edges v2v2q+1 and v1v2q are not in G. Fur-
thermore, by the choice of C and xy, the edges v2v2q and v3v2q+1 are not in G. Finally,
since C has no chord of length 2, the edge v1v3 is not in G. Hence, v3v2q ∈ E(G) and thus
vn−1v2v3v2qv2q−1 · · · v4v1C[v2q+1, vn−1] is an (n − 1)-cycle in G. By symmetry, we may assume
that v1v4, v2q−2v2q+1 /∈ E(G).

This implies v1v2q−2, v4v2q+1 ∈ E(G). In view of the paths vnv1 · · · v4 and v1 · · · v5, it fol-
lows that vnv3, v2v5 ∈ E(G). Now vnv3v4v2q+1v1v2v5, C[v5, a], ab ∈ {v2q−1v2q+2, v2qv2q+3}, and
C[b, vn] form an (n− 1)-cycle in G, which completes the proof in this case.

Case 3: C has no chords of length 2 and 3.

In this case C has all possible chords of length 4. It follows that v1v5v6v7v3v4v8v9 · · · v1 is an
(n− 1)-cycle and v1v5v4v3v7v8 · · · v1 is an (n− 2)-cycle in G.

This completes the proof of the theorem. �
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