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Abstract

For a positive integer k, a k-rainbow dominating function of a graph G is a function f from
the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex
v ∈ V (G) with f(v) = ∅ the condition

S

u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled, where N(v) is the
neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set
{f1, f2, . . . , fd} of k-rainbow dominating functions on G with the property that

P

d

i=1 |fi(v)| ≤ k

for each v ∈ V (G), is called a k-rainbow dominating family (of functions) on G. The maximum
number of functions in a k-rainbow dominating family on G is the k-rainbow domatic number

of G, denoted by drk(G). Note that dr1(G) is the classical domatic number d(G). If G is a
graph of order n and G is the complement of G, then we prove in this note for k ≥ 2 the
Nordhaus-Gaddum inequality

drk(G) + drk(G) ≤ n + 2k − 2.

This improves the Nordhaus-Gaddum bound given by Sheikholeslami and Volkmann recently.

Keywords: k-rainbow dominating function, k-rainbow domination number, k-rainbow domatic
number, Nordhaus-Gaddum bound.
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1 Introduction

In this paper, G is a simple graph with vertex set V = V (G) and edge set E = E(G). The order
|V | of G is denoted by n = n(G). For every vertex v ∈ V , the open neighborhood N(v) is the
set {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The
degree of a vertex v ∈ V is d(v) = |N(v)|. The minimum and maximum degree of a graph G are
denoted by δ = δ(G) and ∆ = ∆(G), respectively. The open neighborhood of a set S ⊆ V is the set
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N(S) =
⋃

v∈S N(v), and the closed neighborhood of S is the set N [S] = N(S)∪ S. The complement

of a graph G is denoted by G. We write Kn for the complete graph of order n and Cn for a cycle of
length n. Consult [7, 10] for notation and terminology which are not defined here.

A subset S of vertices of G is a dominating set if N [S] = V . The domination number γ(G)
is the minimum cardinality of a dominating set of G. A domatic partition is a partition of V into
dominating sets, and the domatic number d(G) is the largest number of sets in a domatic partition.
The domatic number was introduced by Cockayne and Hedetniemi [5]. In their paper, they showed
that γ(G) · d(G) ≤ n.

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f
from the vertex set V (G) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex
v ∈ V (G) with f(v) = ∅ the condition

⋃

u∈N(v) f(u) = {1, 2, . . . , k} is fulfilled. The weight of a

kRDF f is the value ω(f) =
∑

v∈V |f(v)|. The k-rainbow domination number of a graph G, denoted
by γrk(G), is the minimum weight of a kRDF of G. A γrk(G)-function is a k-rainbow dominating
function of G with weight γrk(G). Note that γr1(G) is the classical domination number γ(G). The k-
rainbow domination number was introduced by Brešar, Henning, and Rall [1] and has been studied
by several authors (see for example [2, 3, 4, 11]). Rainbow domination of a graph G coincides
with ordinary domination of the Cartesian product of G with the complete graph, in particular,
γrk(G) = γ(G�Kk) for any graph G [1]. This implies (cf. [3]) that

γr1(G) ≤ γr2(G) ≤ · · · ≤ γrk(G) ≤ n

for any graph G of order n. Furthermore, it was proved in [6] that

min{|V (G)|, γ(G) + k − 2} ≤ γrk(G) ≤ kγ(G)

for any k ≥ 2 and any graph G. Combining the inequality γ(G) ≥ ⌈ n
∆+1⌉ given in [9] and the

identity γrk(G) = γ(G�Kk) given in [1], we obtain the following lower bound for the k-rainbow
domination number of a graph G. If G is a graph of order n and maximum degree ∆, then

γrk(G) ≥

⌈

kn

∆ + k

⌉

.

(Another direct proof of this inequality is given in the first part of the proof of Theorem 7: In an
arbitrary graph G the inequalities (2) and (3) are valid if we replace δ by ∆.)

A set {f1, f2, . . . , fd} of k-rainbow dominating functions of a graph G with the property that
∑d

i=1 |fi(v)| ≤ k for each v ∈ V (G), is called a k-rainbow dominating family (of functions) on G.
The maximum number of functions in a k-rainbow dominating family (kRD family) on G is the
k-rainbow domatic number of G, denoted by drk(G). The k-rainbow domatic number is well-defined
and

drk(G) ≥ k (1)

for all graphs G, since the set consisting of the functions fi : V (G) → P({1, 2, . . . , k}) defined by
fi(v) = {i} for each v ∈ V (G) and each i ∈ {1, 2, . . . , k}, forms a kRD family on G. Note that
dr1(G) is the classical domatic number d(G).

The k-rainbow domatic number was introduced and investigated by Sheikholeslami and Volk-
mann [8]. The following results on the k-rainbow domatic number are important for our investiga-
tions.

Theorem 1 (Sheikholeslami & Volkmann [8]). For every graph G with minimum degree δ,

drk(G) ≤ δ + k.

Theorem 2 (Sheikholeslami & Volkmann [8]). For every graph G of order n,

drk(G) ≤ n.
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The special case k = 1 in Theorem 1 was done by Cockayne and Hedetniemi [5]. As an application
of Theorem 1, Sheikholeslami and Volkmann proved the following Nordhaus-Gaddum type result.

Theorem 3 (Sheikholeslami & Volkmann [8]). For every graph G of order n,

drk(G) + drk(G) ≤ n + 2k − 1.

If drk(G) + drk(G) = n + 2k − 1, then G is regular.

Corollary 4 (Cockayne & Hedetniemi [5] 1977). If G is a graph of order n, then d(G)+d(G) ≤ n+1.

Theorem 5 (Sheikholeslami & Volkmann [8]). If k is a positive integer, and G is isomorphic to the

complete graph Kn of order n ≥ k, then drk(G) = n.

In their paper [8], the authors posed the following conjecture.

Conjecture 1. For every integer k ≥ 2 and every graph G of order n,

drk(G) + drk(G) ≤ n + 2k − 2.

The purpose of this note is to prove the aforementioned conjecture.

2 Nordhaus-Gaddum bounds

Using (1), our first Nordhaus-Gaddum inequality is immediate.

Theorem 6. If k ≥ 1 is an integer, and G is a graph of order n, then

2k ≤ drk(G) + drk(G).

The next result gives an upper bound for the k-rainbow domatic number of some special regular
graphs.

Theorem 7. Let G be a δ-regular graph of order n. If G has a γrk(G)-function f such that

V2∪V3∪· · ·∪Vk 6= ∅ or V2 = V3 = · · · = Vk = ∅ and k|V0| < δ|V1|, where Vi = {v ∈ V (G) : |f(v)| = i},
then

drk(G) ≤ δ + k − 1.

Proof. Let f be a γrk(G)-function and let Vi = {v : |f(v)| = i} for i = 0, 1, . . . , k. Then γrk(G) =
|V1| + 2|V2| + · · · + k|Vk| and n = |V0| + |V1| + · · · + |Vk|. Let E0 = (V0, V \ V0) be the edges from
V0 to V \ V0. Since f is a γrk(G)-function, we obtain

k|V0| ≤
∑

xy∈E0, x∈V \V0

|f(x)| ≤ δ(|V1| + 2|V2| + · · · + k|Vk|) = δγrk(G). (2)

Now it follows from (2) that

(δ + k)γrk(G) = δγrk(G) + kγrk(G)

≥ k|V0| + k(|V1| + 2|V2| + · · · + k|Vk|)

= k(|V0| + |V1| + · · · + |Vk|) + k(|V2| + 2|V3| + · · · + (k − 1)|Vk|)

= kn + k(|V2| + 2|V3| + · · · + (k − 1)|Vk|)

≥ kn.

(3)

Let {f1, f2, . . . , fd} be a kRD family of G such that d = drk(G). It follows that

d
∑

i=1

ω(fi) =

d
∑

i=1

∑

v∈V

|fi(v)| =
∑

v∈V

d
∑

i=1

|fi(v)| ≤
∑

v∈V

k = kn. (4)
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Suppose to the contrary that d ≥ δ + k. If V2 ∪ V3 ∪ · · · ∪ Vk 6= ∅, then (3) shows that γrk(G) ≥
(kn + k)/(δ + k). It follows that

d
∑

i=1

ω(fi) ≥
d

∑

i=1

γrk(G) ≥ d

⌈

kn + k

δ + k

⌉

≥ (δ + k)

(

kn + k

δ + k

)

= kn + k > kn,

a contradiction to (4). If V2 = V3 = · · · = Vk = ∅ and k|V0| < δ|V1|, then γrk(G) = |V1| and
n = |V0| + |V1| and thus

(δ + k)γrk(G) = k|V1| + δ|V1| > k|V1| + k|V0| = kn.

This implies that γrk(G) > kn/(δ + k), and we obtain the following contradiction to (4)

d
∑

i=1

ω(fi) ≥
d

∑

i=1

γrk(G) > (δ + k)

(

kn

δ + k

)

= kn.

Therefore d ≤ δ + k − 1, and the proof is complete.

Now we improve the upper bound given in Theorem 3 for k ≥ 2.

Theorem 8. If k ≥ 2 is an integer, and G is a graph of order n, then

drk(G) + drk(G) ≤ n + 2k − 2.

Proof. If G is not regular, then Theorem 3 implies the desired result. Now let G be δ-regular.
Assume that G has a γrk(G)-function f such that V2∪V3∪· · ·∪Vk 6= ∅ or V2 = V3 = · · · = Vk = ∅

and k|V0| < δ|V1|, where Vi = {v ∈ V (G) : |f(v)| = i}. Then we deduce from Theorem 7 that
drk(G) ≤ δ + k − 1. Using Theorem 1, we obtain the desired result as follows

drk(G) + drk(G) ≤ (δ(G) + k − 1) + (δ(G) + k)

= (δ(G) + k − 1) + (n − δ(G) − 1 + k)

= n + 2k − 2.

It remains the case that every γrk(G)-function f of G fulfills V2 = V3 = · · · = Vk = ∅ and k|V0| =
δ|V1|. Note that n = |V0|+ |V1|. Furthermore, |V0| ≥ 1 and thus |V1| ≥ k. Since δ(G)+δ(G) = n−1,
it follows that δ(G) ≥ (n − 1)/2 or δ(G) ≥ (n − 1)/2. We assume, without loss of generality, that
δ(G) ≥ (n − 1)/2.

If |V1| ≥ 2k, then k|V0| = δ|V1| ≥ 2kδ and thus |V0| ≥ 2δ. This leads to the contradiction

n = |V0| + |V1| ≥ 2δ + 2k ≥ n − 1 + 2k.

In the case k +1 ≤ |V1| ≤ 2k−1, we define V i
1 = {v : f(v) = {i}} for i ∈ {1, 2, . . . , k}. Because of

|V1| ≤ 2k − 1, we observe that |V i
1 | = 1 for at least one index i ∈ {1, 2, . . . , k}. We assume, without

loss of generality, that |V 1
1 | = 1. Since each vertex of V0 is adjacent to the vertex of V 1

1 , we deduce
that |V0| ≤ δ. This implies that

k|V0| ≤ kδ < δ|V1|,

a contradiction to the assumption k|V0| = δ|V1|.
If |V1| = k, then |V0| = δ and so n = δ + k. Hence δ(G) = n− δ − 1 = k − 1. Since the k vertices

of V1 induce a complete component of order k in G, we deduce from Theorem 5 that drk(G) ≤ k.
Now Theorem 1 implies that

drk(G) + drk(G) ≤ (δ(G) + k) + k = n + k ≤ n + 2k − 2.

Since we have discussed all possible cases, the proof is complete.
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Corollary 9. If k ≥ 2 is an integer, and G is a graph of order n, then

drk(G) · drk(G) ≤
(n + 2k − 2)2

4
.

Proof. It follows from Theorem 8 that

(n + 2k − 2)2 ≥ (drk(G) + drk(G))2

= (drk(G) − drk(G))2 + 4drk(G) · drk(G)

≥ 4drk(G) · drk(G)

and this leads to the desired bound.

For the special case k = 2, Theorem 8 was proved by Sheikholeslami and Volkmann [8]. The
complete graph Kn demonstrates that Theorem 8 does not hold for k = 1. Consider the complete
p-partite graph G = Kk,k,...,k of order n = pk. Let V (G) = {vj

i : i = 1, 2, . . . , k; j = 1, 2, . . . , p} and

E(G) = {vj
i v

t
s : 1 ≤ j 6= t ≤ p; i, s = 1, 2, . . . , k}. For ℓ = 1, 2, . . . , n we define fℓ(v

j
i ) as follows: Write

ℓ + i = qk + r, where 0 ≤ r ≤ k − 1, and set fℓ(v
j
i ) = r + 1 if ⌈ℓ/k⌉ = j, and fℓ(v

j
i ) = ∅ otherwise.

Then {f1, f2, . . . , fn} is a kRD family on G. In view of Theorem 2, it follows that drk(Kk,k,...,k) = n.
Since Kk,k,...,k consists of p complete graphs each of order k, it holds drk(Kk,k,...,k) = k and thus,

drk(Kk,k,...,k) + drk(Kk,k,...,k) = n + k.

Hence the complete p-partite graph K2,2,...,2 shows that the bound in Theorem 8 is best possible for
k = 2. Furthermore, we conjecture the following.

Conjecture 2. If k ≥ 2 is an integer, and G is a graph of order n, then

drk(G) + drk(G) ≤ n + k.
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