Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph

¹ D. Meierling, ^{2,3}S.M. Sheikholeslami, and ¹L. Volkmann

 1 Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen, Germany

meierling@math2.rwth-aachen.de volkm@math2.rwth-aachen.de

²Department of Mathematics Azarbaijan University of Tarbiat Moallem Tabriz, I.R. Iran

³School of Mathematics Institute for Research in Fundamental Sciences (IPM) P.O. Box: 19395-5746, Tehran, I.R. Iran

s.m.sheikholeslami@azaruniv.edu

Abstract

2Department of Mathematics

Azarbaijan University of Tarbiat Moallem

Tabriz, I.R. Iran

³School of Mathematics

Institute for Research in Fundamental Sciences (IP

P.O. Box: 19395-5746, Tehran, I.R. Iran

s.m.sheikhole $\begin{tabular}{c} \bf 2Department of Mathematics \\ \bf Azarbaajan University of Tarbiat Modalem \\ \bf 3Cchool of Matrematics \\ \end{tabular} \begin{tabular}{c} \bf 3School of Matrematics \\ \bf 1D. Box: 19395-5746, Tehran, I.R. Iran \\ \bf 2D. Box: 19395-5746, Tehran, I.R. Iran \\ \bf 3. m.sheikholeslamiaqazaruniv.edu \\ \end{tabular} \end{tabular} \label{tab:2} \begin{tabular}{c} \bf 2.2, \bf 3.4, \bf 4.4, \bf 5.4, \bf 6.4, \bf 7.4, \bf$ For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set $V(G)$ to the set of all subsets of the set $\{1, 2, \ldots, k\}$ such that for any vertex $v \in V(G)$ with $f(v) = \emptyset$ the condition $\bigcup_{u \in N(v)} f(u) = \{1, 2, ..., k\}$ is fulfilled, where $N(v)$ is the neighborhood of v . The 1-rainbow domination is the same as the ordinary domination. A set $\{f_1, f_2, \ldots, f_d\}$ of k-rainbow dominating functions on G with the property that $\sum_{i=1}^d |f_i(v)| \leq k$ for each $v \in V(G)$, is called a k-rainbow dominating family (of functions) on G. The maximum number of functions in a k-rainbow dominating family on G is the k-rainbow domatic number of G, denoted by $d_{rk}(G)$. Note that $d_{r1}(G)$ is the classical domatic number $d(G)$. If G is a graph of order n and \overline{G} is the complement of G, then we prove in this note for $k \geq 2$ the Nordhaus-Gaddum inequality

 $d_{rk}(G) + d_{rk}(\overline{G}) \leq n + 2k - 2.$

This improves the Nordhaus-Gaddum bound given by Sheikholeslami and Volkmann recently.

Keywords: k -rainbow dominating function, k -rainbow domination number, k -rainbow domatic number, Nordhaus-Gaddum bound.

MSC 2000: 05C69

1 Introduction

In this paper, G is a simple graph with vertex set $V = V(G)$ and edge set $E = E(G)$. The order |V| of G is denoted by $n = n(G)$. For every vertex $v \in V$, the *open neighborhood* $N(v)$ is the set $\{u \in V(G): uv \in E(G)\}\$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $d(v) = |N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. The *open neighborhood* of a set $S \subseteq V$ is the set

 $N(S) = \bigcup_{v \in S} N(v)$, and the *closed neighborhood* of S is the set $N[S] = N(S) \cup S$. The complement of a graph G is denoted by G. We write K_n for the *complete graph* of order n and C_n for a cycle of length n. Consult [7, 10] for notation and terminology which are not defined here.

A subset S of vertices of G is a dominating set if $N[S] = V$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G . A domatic partition is a partition of V into dominating sets, and the domatic number $d(G)$ is the largest number of sets in a domatic partition. The domatic number was introduced by Cockayne and Hedetniemi [5]. In their paper, they showed that $\gamma(G) \cdot d(G) \leq n$.

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from the vertex set $V(G)$ to the set of all subsets of the set $\{1, 2, \ldots, k\}$ such that for any vertex $v \in V(G)$ with $f(v) = \emptyset$ the condition $\bigcup_{u \in N(v)} f(u) = \{1, 2, ..., k\}$ is fulfilled. The *weight* of a kRDF f is the value $\omega(f) = \sum_{v \in V} |f(v)|$. The k-rainbow domination number of a graph G, denoted by $\gamma_{rk}(G)$, is the minimum weight of a kRDF of G. A $\gamma_{rk}(G)$ -function is a k-rainbow dominating function of G with weight $\gamma_{rk}(G)$. Note that $\gamma_{r1}(G)$ is the classical domination number $\gamma(G)$. The krainbow domination number was introduced by Brešar, Henning, and Rall [1] and has been studied by several authors (see for example $[2, 3, 4, 11]$). Rainbow domination of a graph G coincides with ordinary domination of the Cartesian product of G with the complete graph, in particular, $\gamma_{rk}(G) = \gamma(G \Box K_k)$ for any graph G [1]. This implies (cf. [3]) that

$$
\gamma_{r1}(G) \leq \gamma_{r2}(G) \leq \cdots \leq \gamma_{rk}(G) \leq n
$$

for any graph G of order n . Furthermore, it was proved in [6] that

$$
\min\{|V(G)|, \gamma(G) + k - 2\} \le \gamma_{rk}(G) \le k\gamma(G)
$$

for any $k \geq 2$ and any graph G. Combining the inequality $\gamma(G) \geq \lceil \frac{n}{\Delta+1} \rceil$ given in [9] and the identity $\gamma_{rk}(G) = \gamma(G \square K_k)$ given in [1], we obtain the following lower bound for the k-rainbow domination number of a graph *G*. If *G* is a graph of order *n* and maximum degree Δ , then

$$
\gamma_{rk}(G) \ge \left\lceil \frac{kn}{\Delta + k} \right\rceil.
$$

(Another direct proof of this inequality is given in the first part of the proof of Theorem 7: In an arbitrary graph G the inequalities (2) and (3) are valid if we replace δ by Δ .)

 $\label{eq:22} \begin{array}{ll} \langle G\rangle=\gamma(G\square K_k)\ \mbox{for any graph G}\ |1\rangle. \ \mbox{This implies $(\mathbf{c}\mathbf{f},\mathbf{S})$ that}\\ \gamma_{r1}(G)\leq\gamma_{r2}(G)\leq\cdots\leq\gamma_{rk}(G)\leq\pi\\ \mbox{any graph G}\ \mbox{of order n. Furthermore, it was proved in $[6] that}\\ \min\{|V(G)|,\gamma(G)+k-2)\leq\gamma_{rk}(G)\geq k\gamma(G)\\ \mbox{any $k\geq 2$ and any graph G. Combining the inequality $\gamma(G)\geq\left\lceil\frac{\mathbf{a}}{\mathbf$ A set $\{f_1, f_2, \ldots, f_d\}$ of k-rainbow dominating functions of a graph G with the property that $\sum_{i=1}^d |f_i(v)| \leq k$ for each $v \in V(G)$, is called a k-rainbow dominating family (of functions) on G. The maximum number of functions in a k-rainbow dominating family (kRD family) on G is the k-rainbow domatic number of G, denoted by $d_{rk}(G)$. The k-rainbow domatic number is well-defined and

$$
d_{rk}(G) \ge k \tag{1}
$$

for all graphs G, since the set consisting of the functions $f_i: V(G) \to \mathcal{P}(\{1,2,\ldots,k\})$ defined by $f_i(v) = \{i\}$ for each $v \in V(G)$ and each $i \in \{1, 2, ..., k\}$, forms a kRD family on G. Note that d_{r} (G) is the classical domatic number $d(G)$.

The k-rainbow domatic number was introduced and investigated by Sheikholeslami and Volkmann [8]. The following results on the k-rainbow domatic number are important for our investigations.

Theorem 1 (Sheikholeslami & Volkmann [8]). For every graph G with minimum degree δ ,

$$
d_{rk}(G) \le \delta + k.
$$

Theorem 2 (Sheikholeslami & Volkmann [8]). For every graph G of order n,

$$
d_{rk}(G) \leq n.
$$

The special case $k = 1$ in Theorem 1 was done by Cockayne and Hedetniemi [5]. As an application of Theorem 1, Sheikholeslami and Volkmann proved the following Nordhaus-Gaddum type result.

Theorem 3 (Sheikholeslami & Volkmann [8]). For every graph G of order n ,

$$
d_{rk}(G) + d_{rk}(\overline{G}) \le n + 2k - 1.
$$

If $d_{rk}(G) + d_{rk}(G) = n + 2k - 1$, then G is regular.

Corollary 4 (Cockayne & Hedetniemi [5] 1977). If G is a graph of order n, then $d(G)+d(\overline{G}) \leq n+1$.

Theorem 5 (Sheikholeslami & Volkmann [8]). If k is a positive integer, and G is isomorphic to the complete graph K_n of order $n \geq k$, then $d_{rk}(G) = n$.

In their paper [8], the authors posed the following conjecture.

Conjecture 1. For every integer $k \geq 2$ and every graph G of order n,

$$
d_{rk}(G) + d_{rk}(\overline{G}) \le n + 2k - 2.
$$

The purpose of this note is to prove the aforementioned conjecture.

2 Nordhaus-Gaddum bounds

Using (1), our first Nordhaus-Gaddum inequality is immediate.

Theorem 6. If $k \geq 1$ is an integer, and G is a graph of order n, then

$$
2k \le d_{rk}(G) + d_{rk}(\overline{G}).
$$

The next result gives an upper bound for the k-rainbow domatic number of some special regular graphs.

Theorem 7. Let G be a δ -regular graph of order n. If G has a $\gamma_{rk}(G)$ -function f such that $V_2 \cup V_3 \cup \cdots \cup V_k \neq \emptyset$ or $V_2 = V_3 = \cdots = V_k = \emptyset$ and $k|V_0| < \delta|V_1|$, where $V_i = \{v \in V(G) : |f(v)| = i\},$ then

$$
d_{rk}(G) \le \delta + k - 1.
$$

Proof. Let f be a $\gamma_{rk}(G)$ -function and let $V_i = \{v : |f(v)| = i\}$ for $i = 0, 1, ..., k$. Then $\gamma_{rk}(G) =$ $|V_1| + 2|V_2| + \cdots + k|V_k|$ and $n = |V_0| + |V_1| + \cdots + |V_k|$. Let $E_0 = (V_0, V \setminus V_0)$ be the edges from V_0 to $V \setminus V_0$. Since f is a $\gamma_{rk}(G)$ -function, we obtain

$$
|F|V_0| \leq \sum_{xy \in E_0, x \in V\setminus V_0} |f(x)| \leq \delta(|V_1| + 2|V_2| + \cdots + k|V_k|) = \delta \gamma_{rk}(G). \tag{2}
$$

Now it follows from (2) that

The purpose of this note is to prove the aforementioned conjecture.
\n**Normalhaus-Gaddum bounds**
\ning (1), our first Nordhaus-Gaddum inequality is immediate.
\nheorem 6. If
$$
k \ge 1
$$
 is an integer, and G is a graph of order n, then
\n $2k \le d_{rk}(G) + d_{rk}(\overline{G})$.
\nThe next result gives an upper bound for the k-rainbow dominate number of some special regular
\naphs.
\nheorem 7. Let G be a δ -regular graph of order n. If G has a $\gamma_{rk}(G)$ -function f such that
\n $\bigcup Y_3 \cup \cdots \cup V_k \neq \emptyset$ or $V_2 = V_3 = \cdots = V_k = \emptyset$ and $k|V_0| < \delta|V_1|$, where $V_i = \{v \in V(G) : |f(v)| = i\}$,
\nand
\n $d_{rk}(G) \le \delta + k - 1$
\n $d_{rk}(G) \le \delta + k - 1$
\n $d_{rk}(G) \le \delta + k - 1$
\nto $V \setminus V_0$. Since f is a $\gamma_{rk}(G)$ -function, we obtain
\n $k|V_0| \le \sum_{xy \in E_0, x \in V \setminus V_0} |f(x)| \le \delta(|V_1| + 2|V_2| + \cdots + k|V_k|) = \delta \gamma_{rk}(G)$.
\nNow it follows from (2) that
\n $(\delta + k)\gamma_{rk}(G) = \delta \gamma_{rk}(G) + k\gamma_{rk}(G)$
\n $\ge k|V_0| + k(|V_1| + 2|V_2| + \cdots + k|V_k|)$
\n $= k(|V_0| + |V_1| + \cdots + |V_k|) + k(|V_2| + 2|V_3| + \cdots + (k-1)|V_k|)$
\n $= kn + k(|V_2| + 2|V_3| + \cdots + (k-1)|V_k|)$
\n $\ge kn$.
\n(3)

Let $\{f_1, f_2, \ldots, f_d\}$ be a kRD family of G such that $d = d_{rk}(G)$. It follows that

$$
\sum_{i=1}^{d} \omega(f_i) = \sum_{i=1}^{d} \sum_{v \in V} |f_i(v)| = \sum_{v \in V} \sum_{i=1}^{d} |f_i(v)| \le \sum_{v \in V} k = kn.
$$
\n(4)

Suppose to the contrary that $d \ge \delta + k$. If $V_2 \cup V_3 \cup \cdots \cup V_k \ne \emptyset$, then (3) shows that $\gamma_{rk}(G) \ge$ $(kn+k)/(\delta+k)$. It follows that

$$
\sum_{i=1}^d \omega(f_i) \ge \sum_{i=1}^d \gamma_{rk}(G) \ge d\left\lceil \frac{kn+k}{\delta+k} \right\rceil \ge (\delta+k)\left(\frac{kn+k}{\delta+k}\right) = kn+k > kn,
$$

a contradiction to (4). If $V_2 = V_3 = \cdots = V_k = \emptyset$ and $k|V_0| < \delta|V_1|$, then $\gamma_{rk}(G) = |V_1|$ and $n = |V_0| + |V_1|$ and thus

$$
(\delta + k)\gamma_{rk}(G) = k|V_1| + \delta|V_1| > k|V_1| + k|V_0| = kn.
$$

This implies that $\gamma_{rk}(G) > kn/(\delta + k)$, and we obtain the following contradiction to (4)

$$
\sum_{i=1}^{d} \omega(f_i) \ge \sum_{i=1}^{d} \gamma_{rk}(G) > (\delta + k) \left(\frac{kn}{\delta + k}\right) = kn.
$$

Therefore $d \leq \delta + k - 1$, and the proof is complete.

Now we improve the upper bound given in Theorem 3 for $k \geq 2$.

Theorem 8. If $k \geq 2$ is an integer, and G is a graph of order n, then

$$
d_{rk}(G)+d_{rk}(\overline{G})\leq n+2k-2
$$

.

Proof. If G is not regular, then Theorem 3 implies the desired result. Now let G be δ -regular.

Assume that G has a $\gamma_{rk}(G)$ -function f such that $V_2 \cup V_3 \cup \cdots \cup V_k \neq \emptyset$ or $V_2 = V_3 = \cdots = V_k = \emptyset$ and $k|V_0| < \delta|V_1|$, where $V_i = \{v \in V(G) : |f(v)| = i\}$. Then we deduce from Theorem 7 that $d_{rk}(G) \leq \delta + k - 1$. Using Theorem 1, we obtain the desired result as follows

$$
d_{rk}(G) + d_{rk}(\overline{G}) \leq (\delta(G) + k - 1) + (\delta(\overline{G}) + k)
$$

= $(\delta(G) + k - 1) + (n - \delta(G) - 1 + k)$
= $n + 2k - 2$.

It remains the case that every $\gamma_{rk}(G)$ -function f of G fulfills $V_2 = V_3 = \cdots = V_k = \emptyset$ and $k|V_0| =$ $\delta|V_1|$. Note that $n = |V_0| + |V_1|$. Furthermore, $|V_0| \ge 1$ and thus $|V_1| \ge k$. Since $\delta(G) + \delta(G) = n - 1$, it follows that $\delta(G) \geq (n-1)/2$ or $\delta(G) \geq (n-1)/2$. We assume, without loss of generality, that $\delta(G) \geq (n-1)/2.$

If $|V_1| \geq 2k$, then $k|V_0| = \delta |V_1| \geq 2k\delta$ and thus $|V_0| \geq 2\delta$. This leads to the contradiction

$$
n = |V_0| + |V_1| \ge 2\delta + 2k \ge n - 1 + 2k.
$$

29 April 2011 FINAL DRAFT In the case $k+1 \leq |V_1| \leq 2k-1$, we define $V_1^i = \{v : f(v) = \{i\}\}$ for $i \in \{1, 2, ..., k\}$. Because of $|V_1| \leq 2k+1$, we observe that $|V_1^i|=1$ for at least one index $i \in \{1,2,\ldots,k\}$. We assume, without loss of generality, that $|V_1^1|=1$. Since each vertex of V_0 is adjacent to the vertex of V_1^1 , we deduce that $|V_0| \leq \delta$. This implies that

$$
k|V_0| \le k\delta < \delta|V_1|,
$$

a contradiction to the assumption $k|V_0| = \delta|V_1|$.

If $|V_1| = k$, then $|V_0| = \delta$ and so $n = \delta + k$. Hence $\delta(G) = n - \delta - 1 = k - 1$. Since the k vertices of V_1 induce a complete component of order k in G, we deduce from Theorem 5 that $d_{rk}(G) \leq k$. Now Theorem 1 implies that

$$
d_{rk}(G) + d_{rk}(\overline{G}) \le (\delta(G) + k) + k = n + k \le n + 2k - 2.
$$

Since we have discussed all possible cases, the proof is complete.

 \Box

 \Box

Corollary 9. If $k \geq 2$ is an integer, and G is a graph of order n, then

$$
d_{rk}(G) \cdot d_{rk}(\overline{G}) \le \frac{(n+2k-2)^2}{4}.
$$

Proof. It follows from Theorem 8 that

$$
(n+2k-2)^2 \ge (d_{rk}(G) + d_{rk}(\overline{G}))^2
$$

=
$$
(d_{rk}(G) - d_{rk}(\overline{G}))^2 + 4d_{rk}(G) \cdot d_{rk}(\overline{G})
$$

$$
\ge 4d_{rk}(G) \cdot d_{rk}(\overline{G})
$$

and this leads to the desired bound.

29 April 2012 Final States ($p(u_i) = t + v_i$ and States ($p(u_i) = t + v_i$ Mapple of the energy λ it follows that $d_{rk}(K_{k,k,\ldots,k}) = 0$.

2013 April 2013 States ($p(u_i) = t + v_i$ Mapple Explored Theorem 2.1 it follows that $d_{rk}(K_{k,k,\ldots,k})$ For the special case $k = 2$, Theorem 8 was proved by Sheikholeslami and Volkmann [8]. The complete graph K_n demonstrates that Theorem 8 does not hold for $k = 1$. Consider the complete p-partite graph $G = K_{k,k,\dots,k}$ of order $n = pk$. Let $V(G) = \{v_i^j : i = 1,2,\dots,k; j = 1,2,\dots,p\}$ and $E(G) = \{v_i^j v_s^t : 1 \leq j \neq t \leq p; i, s = 1, 2, \ldots, k\}$. For $\ell = 1, 2, \ldots, n$ we define $f_{\ell}(v_i^j)$ as follows: Write $\ell + i = qk + r$, where $0 \le r \le k - 1$, and set $f_{\ell}(v_i^j) = r + 1$ if $\lceil \ell/k \rceil = j$, and $f_{\ell}(v_i^j) = \emptyset$ otherwise. Then $\{f_1, f_2, \ldots, f_n\}$ is a kRD family on G. In view of Theorem 2, it follows that $d_{rk}(K_{k,k,\ldots,k}) = n$. Since $K_{k,k,...,k}$ consists of p complete graphs each of order k, it holds $d_{rk}(K_{k,k,...,k}) = k$ and thus,

$$
d_{rk}(K_{k,k,\ldots,k}) + d_{rk}(\overline{K_{k,k,\ldots,k}}) = n+k.
$$

Hence the complete *p*-partite graph $K_{2,2,...,2}$ shows that the bound in Theorem 8 is best possible for $k = 2$. Furthermore, we conjecture the following.

Conjecture 2. If $k \geq 2$ is an integer, and G is a graph of order n, then

$$
d_{rk}(G) + d_{rk}(\overline{G}) \leq n + k.
$$

Acknowledgments. This research was in part supported by a grant from IPM (No. 89050042).

References

- [1] B. Brešar, M.A. Henning, and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008), 213–225.
- [2] B. Brešar and T.K. Sumenjak, *On the 2-rainbow domination in graphs*, Discrete Appl. Math. 155 (2007), 2394–2400.
- [3] G.J. Chang, J. Wu, and X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010), 8–12.
- [4] T. Chunling, L. Xiaohui, Y. Yuansheng, and L. Meiqin, 2-rainbow domination of generalized *Petersen graphs* $P(n, 2)$, Discrete Appl. Math. **157** (2009), 1932–1937.
- [5] E.J. Cockayne and S.T. Hedetniemi, Towards a theory of domination in graphs, Networks 7 (1977), 247–261.
- [6] B. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K_2 , Discuss. Math. Graph Theory 24 (2004), 389–402.
- [7] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., New York, 1998.
- [8] S.M. Sheikholeslami and L. Volkmann, The k-rainbow domatic number of a graph, Discuss. Math. Graph Theory, to appear.

 \Box

- [9] H.B. Walikar, B.D. Acharya, and E. Sampathkumar, Recent developments in the theory of domination in graphs, In MRI Lecture Notes in Math., Mahta Research Instit., Allahabad, volume 1, 1979.
- [10] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc., 2000.
- [11] G. Xu, 2-rainbow domination of generalized Petersen graphs $P(n, 3)$, Discrete Appl. Math. 157 (2009), 2570–2573.

2012 Prince