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Abstract

Let G be a finite and simple graph with vertex set V(G), and let f : V(G) —
{-1,1} be a two-valued function. If }° .y, f(z) = 1 for each v € V(G), where
N{v] is the closed neighborhood of v, then f is a signed dominating function on
G. A set {f1, fa,..., fa} of signed dominating functions on G with the property
that Z?:l fi(z) < 1 for each & € V(G), is called a signed dominating family (of
functions) on G. The maximum number of functions in a signed dominating family
on G is the signed domatic number on G. In this paper we investigate the signed
domatic number of some circulant graphs and of the torus C, x C.
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1 Terminology and introduction

We consider finite, undirected and simple graphs G with vertex set V(G). If v is a vertex
of the graph G, then N(v) = Ng(v) is the open neighborhood of v, i.e., the set of all
vertices adjacent with v. The closed neighborhood N[v] = Ng[v] of a vertex v consists
of the vertex set N(v) U {v}. The number dg(v) = d(v) = |N(v)| is the degree of the
vertex v € V(G), and §(G) is the minimum degree of G. The cycle of order n is denoted
by C,. If A C V(G) and f is a mapping from V(G) into some set of numbers, then
J(A) =2 s f(2).

The signed dominating function is defined in [2] as a two-valued function f : V(G) —

{—1,1} such that >,y f(z) = 1 for each v € V(G). The sum f(V(G)) is called

1



the weight w(f) of f. The minimum of weights w(f), taken over all signed dominating
functions f on G, is called the signed domination number of G, denoted by vs(G). Signed
domination has been studied in [2], [3], [4], [7], [8] and [11]. Further information on this
parameter can be found in the monographs [5] and [6] by Haynes, Hedetniemi and Slater.

A set {f1, fa,. .., fa} of signed dominating functions on G with the property that
Zle fi(z) < 1 for each vertex = € V(G), is called a signed dominating family on G.
The maximum number of functions in a signed dominating family on G is the signed
domatic number of G, denoted by dg(G). The signed domatic number was introduced
by Volkmann and Zelinka [10]. Volkmann and Zelinka [10] and Volkmann [9] have de-
termined the signed domatic number of complete graphs and complete bipartite graphs,
respectively. In addition, Volkmann and Zelinka [10] presented the following two basic
results, which are useful for our investigations.

Theorem 1.1 (Volkmann, Zelinka [10] 2005) If G is a graph, then
1 <dg(G) <0(G) + 1.

Theorem 1.2 (Volkmann, Zelinka [10] 2005) The signed domatic number is an odd
integer.

Next we derive a structural result on 2r-regular graphs with maximal possible signed
domatic number.

Theorem 1.3 Let G be a 2r-regular graph, and let u be an arbitrary vertex of G.
If d = ds(G) = 2r + 1 and {f1, fo, .=+, fa} is a signed domatic family of G, then
S filu) =1 and > venpu dilz) =1 for eachu € V(G) and each i € {1,2,...,2r +1}.

Proof. Let u be an arbitrary vertex of G. Because of ¢ f;(u) < 1, this sum contains
at least » summands which have the value —1. Using the fact that 3 v, fi(z) > 1 for
each i € {1,2,...,2r + 1}, we observe that each of these sums contains at least r + 1
summands which have the value 1. Consequently, the sum

d

Z Zfz(ff)zz Z fi(z) (1)
]

z€N[u] i=1 =1 z€Nu

contains at least dr summands of value —1 and at least d(r + 1) summands of value 1.
As the sum (1) consists of exactly d(2r 4+ 1) summands, we conclude that Y27 f(u)
contains exactly 7 summands of value —1 and ) _ N[u] fi(x) contains exactly r + 1 sum-
mands of value 1 for each ¢ € {1,2,...,2r+1}. This leads to the desired result, and the
proof is complete. [



2 Circulant graphs

Following an article of Boesch and Tindell [1], for an integer n > 3 and a subset S of
{1,2,...,[(n+2)/2]}, the circulant graph C,,(S) is a graph on n vertices uy, us, . . ., Uy,
such that each vertex u; is adjacent to the the vertices u;4, for s € S, where the subscripts
are taken modulo n. Certainly, C,({1}) is isomorphic to the cycle C, and C,({1,2})
is isomorphic to the square C? of C,. It is easy to observe that circulant graphs are
vertex-symmetric.

Theorem 2.1 If G is the circulant graph C,({1,2,...,r}), then ds(G) = 2r +1 if
and only if n =0 (mod 2r 4 1).

Proof. Let G be the circulant graph C,({1,2,...,r}) with vertex set {uq, us, ..., u,}.
Since G is 2r-regular, Theorem 1.1 implies that dg(G) < 2r 4 1.
Suppose that n = 0 (mod 2r + 1). In this case, we define a signed dominating family

{f1, fay -+, fors1} as follows:

filwi) = filuipr) = ... = filuipnsr) = =1
and

filuirr) = filtigrin) = o= filtizer) = 1
fori:=1,2,...,2r+1, where the indices of the vertices are taken modulo 2r + 1. For the

remaining vertices ug,; 14 with k& > 1, we define the function f; by fi(ug,114%) = fi(ug)
forie{1,2,...,2r +1}.

Suppose that n = k(2r + 1) + s with s € {1,2,...,2r}. Assume that ds(G) = d =
2r + 1 and let {fi, fo, ..., fa} be a corresponding signed dominating family. Let

Ag={i:i=j(2r+1) (modn),j € Ng}

be the set of indices ¢+ we derive from 0 by adding a multiple of 2r + 1 modulo n. Let
t be the greatest common divisor of s and 2r + 1, i.e., let s = pt and 2r + 1 = ¢t
with p and ¢ relatively prime. Let a > 1 and b > 1 be the smallest integers such that
a(2r +1) = bn= b[k(2r + 1) + s]. Then

a(2r +1) = bk(2r + 1) + s] & aqt = bt(kq + p) & aq = b(kq + p).

Since p and q are relatively prime, ¢ divides b. Analogously, kq+ p divides a. Hence, a =
kq+ p and b = ¢. Lt follows that |Ag| = kg + p. Analogously, for every ¢ € {1,2...,2r},
the set Ay ={j:j=/(+i(mod n),i € Ay} contains exactly kq + p elements. Therefore,
the set {1,2,...,n} can be partitioned in ¢ sets A;, A,,,..., A;, of size kg + p. Note
that, by Theorem 1.3, Z?Zl fi(u;) contains exactly  summands of value —1 for each
je{l,2,...,n} and erN[uj} fi(z) contains exactly r + 1 summands of value 1 for each
jed{l,2,....,n}andi €{1,2,...,2r+1}. It follows that f;(v) = f;(w) for every pair of
vertices {v,w} C Ay, every i € {1,2,...,d} and every £ € {0,1,...,2r}. Furthermore,



note that each set A, contains exactly g elements of {1,2,...,2r+1}, by definition. This
implies that
1= Z filx) =tiq —tag = q(t1 — t2)
TEN [ur41]
with ¢; +to =t and ¢; > t, for an arbitrary ¢ € {1,2,...,d}. Hence, ¢ = 1, a contradic-
tion to pt =s < 2r+1=g¢qt. Sod < 2r + 1, and the proof is complete. [

The least common multiple lem(a, b) of two integers a and b is the smallest number
greater than zero which is divisible by a and b.

Theorem 2.2 Let G be the circulant graph C,,({d,2d,...,rd}). Then dg(G) = 2r +1
if and only if % =0 (mod 2r+1).

Proof. First we dicuss the case r = 1. For an arbitrary vertex wu; we investigate
the structure of the component Fj containing u;. Clearly, u; € V(F}), and since u; is
adjacent to ugy1, it follows that ug,; € V(F}). The vertex ug.; is adjacent to uggy 1, and
SO Uggy1 € V(F). If we continue this process we finally arrive at ugqgq1 = uy. This leads
to k = % and thus |V (F)| = %.

Furthermore, the definition of the circulant graph implies that u, 4 € V (F}) for every
vertex u, € V(Fy). However, for reason of symmetry these vertices were already taken
up before.

For r > 1, we also have |V (F})| = %, but the number of edges could increase.
In both cases the component Fj is isomorphic to Cw ({1,2,...,r}).

Possible further components Fs, F5, ..., F; of G are isomorphic to F;. Applying The-
orem 2.1, we obtain the desired result as follows:

ds(G) = 2r + 1
— dg(F))=2r+1 for all components F;, i € {1,2,...,t}
lem(n, d)

y =0 (mod 2r+1) 0O

3 The torus C, x C,

The cartesian product G = G; x G5 of two vertex disjoint graphs G; and Gy has
V(G) = V(Gh) x V(G2) and two vertices (uy,us) and (vy,vs) of G are adjacent if and
only if either u; = vy and ugvy € E(Gs) or uy = vy and ujv; € E(Gq). The cartesian
product of two cycles C, and C|, is called a torus. The torus C, x C, is 4-regular. Using
Theorem 1.1 and 1.2, we obtain dg(C, x C,) € {1,3,5}. Theorem 3.3 conveys a char-
acterisation of the torus graphs with ds(G) = 5. For clarity, in the folling figures the
vertices x with f(x) = —1 are colored black.



Theorem 3.1 If ¢ > 3, then
ds(C3 x Cy) #5

Proof. Suppose on the contrary that ds(C5 x C;) = 5. Because of Theorem 1.3, there
exists a signed dominating function f such that, without loss of generality, f(z12) =
f(222) = —1. This implies f(x11) = f(z21) = f(232) = f(213) = f(z23) = 1, and thus
it follows that f(z31) = f(233) =1 (see Figure 1).

Figure 1

Hence >_ cni., . f(¥) = 3, a contradiction to Theorem 1.3. [

Theorem 3.2 If ¢ > 4, then
ds(Cy x Cy) # 5.

Proof. Suppose on the contrary that dg(Cy x C;) = 5. Let f be an arbitrary signed
dominating function, and let x5 5 be avertex with f(xq92) = —1. Because of Theorem 1.3,
there exists a vertex, say w32, such that f(x32) = —1. This implies f(z12) = f(221) =
f(wsn) = fzap) = f(xss) = f(w23) = 1(see Figure 2).
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Now 1z ; is adjacent to x4, for j € {1,2,3,4} or z;; is adjacent to z;4 for i €

{1,2,3,4}.

Case 1: Assume that =, ; is adjacent to x4 ; for j € {1,2,3,4}.
Subcase 1.1: Assume that f(x1,) = —1. This implies f(z;3) = 1. Hence, according

to Theorem 1.3, we obtain f(z14) = f(224) = —1. Now we conclude that f(z34) =
f(x14) =1. Hence 3 ., 1 f(y) > 3, a contradiction to Theorem 1.3.
Subcase 1.2: Assume that f(z1;) = 1. This leads to f(z41) = —1. Because of

symmetry, the vertex x4, can be looked upon as the vertex z;; in Subcase 1.1.



Case 2: Assume that z;; is adjacent to z; 4 for i € {1,2,3,4}.

Subcase 2.1: Assume that f(z;;) = —1. This yields to f(z13) = f(224) = 1 and
thus >°, c v, f(¥) = 3, a contradiction to Theorem 1.3.

Subcase 2.2: Assume that f(x1,) = 1. It follows that f(x14) = f(224) = —1. Hence
we obtain f(x34) = f(x13) = 1. This implies f(x43) = —1 and so f(z4;) = 1. We
finally deduce that ZyeN[m&ﬂ f(y) > 3, a contradiction to Theorem 1.3. O

Theorem 3.3 If p > 3 and ¢ > 3, then
ds(Cp, x Cy) =5 <= p=0 (mod 5) A ¢ =0 (mod 5).

Proof. In view of Theorems 3.1 and 3.2, we assume in the following that p > 5 and
q > 5. The case p = ¢ = 5 will be investigated at the end of the proof, and hence we
assume first that p > 6. We denote the vertices with x; ;, where j € {1,2,...,p} and

ie{1,2,...,q}.
We assume that dg(C, x C,) = 5. Let f be an arbitrary signed domination function.
First we show that f has a certain structure on a partial square with 5 x 5 vertices.
Because of Theorem 1.3, there exists a signed dominating function f such that,
without loss of generality, f(xs2) = f(x32) = —1. This implies f(z12) = f(221) =
f(s2) = f(x33) = f(@24) = f(213) =1 (see Figure 3).
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Applying Theorem 1.3, we observe that either f(zy5) = —1 or, without loss of
generality, f(2s4) = —1.
Case 1: Assume that f(235) = —1. This leads to f(z14) = f(234) = 1 and either

f(zss) = Lor f(a15) = 1, say f(xss) =1 (see Figure 4). Thus 3° ..o f(y) = 3, a
contradiction to Theorem 1.3.
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Case 2: Assume that f(z34) = —1. This implies f(x14) = f(%25) = 1 and either
f(#14) = =1or f(z35) = —1.

Subcase 2.1: Assume that f(z44) = —1. This yields to f(z35) = f(245) = f(za3) =
f(z54) =1 (see Figure 5) and either f(z55) =1 or f(x55) = —1.
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Subcase 2.1.1: Assume that f(z55) = 1. This leads to f(z46) = f(z36) = —1 and so
f(w26) =1 (see Figure 6). Thus >y, 1 f(y) = 3, a contradiction to Theorem 1.3.
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Subcase 2.1.2: Assume that f(x55) = —1. Then we deduce that f(z53) = 1 and thus
f(z42) = f(xs2) = —1. This leads to f(z31) = f(z41) = f(x51) = 1 (see Figure 7).
Hence >, i, f(¥) = 3, a contradiction to Theorem 1.3.
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Subcase 2.2: Assume that f(xss) = —1. Then we obtain f(xs4) = f(zas) =
f(z36) = 1. It follws that f(z43) = 1 and thus f(z42) = f(253) = —Landso f(xs3,) = 1.
If z36 is adjacent to w3, then we arrive at the contradiction ZyeN[ml]f(y) > 3.

Therefore we deduce that that f(xe6) = —1 or f(xss) = —1 or f(x37) = —1. Since
f(z37) = —1 leads to the same situation as in Case 1, we investigate next the cases

f(x276) = —1 or f(l‘476) = —1
Subcase 2.2.1: Assume that f(z36) = —1. This implies f(z15) = 1 (see Figure 8),

and we obtain the contradiction 37, -y, 41 f(y) 23
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Subcase 2.2.2: Assume that f(x46) = —1. This leads to f(z26) = 1. It follows that
f(x54) = —1 and therefore f(zs52) = f(zs55) = f(ws3) = f(w64) = [(w62) = 1 (see

Figure 9).
If f(zs6) = —1, then with the vertices x34, x35, T4 and x5, we arrive at the
situation of Subcase 2.1. Hence we assume that f(x56) = 1. This yields to f(xg5) = —1

(see Figure 9).



If f(ze6) = 1, then with the vertices x5 3, 54, T65 and x75, we have the situation of
Subcase 2.1. Thus we now assume that f(xg6) = —1 (see Figure 9).
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The vertices x;; for 7,7 € {2,3,4,5,6} lead to a square with rows Ry, R, R3, Ry, Rs
and columns C4, Cy, C3, Cy, Cs with a fixed function f (see Figure 9). Now it is straight-
forward to verify that f is a signed dominating function only if p = 0 (mod 5) and
¢ =0 (mod 5).

The following five functions fi, fa, f3, fa, f5 (see Figure 10) lead to a desired signed
dominating family for p = ¢ = 5.

For p = 5ky and q = 5ks (k; and k, arbitrary) we enumerate the vertices with y; ;,
ie{1,2,...,p}, j €{1,2,...,q} provided that y;; is adjacent to the vertices y;_1 ;,
Yit1, Yij—1 and y; j11, where the indices are taken modulo p or modulo ¢, respectively.
For y; ; we have 4 = bhy + 4y and j = Bhy + jo with ig, jo € {1,2,3,4,5}. If we define
91(Yij) = fulwi, ;) for k€ {1,2,3,4,5}, then it is a simple matter to verify that each
gr 1s a signed dominating function. In this case we have Z?Zl gi(y) = 1 for every vertex
y € V(C, x C,), and thus {1, g2, g3; 94, g5} is a signed dominating family. OJ

If p=0 (mod 3) and ¢ > 3is arbitrary, then we can show that ds(C, x C,) = 3.
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