### The signed domatic number of some regular graphs

Dirk Meierling, Lutz Volkmann and Stephan Zitzen

Lehrstuhl II für Mathematik, RWTH-Aachen University, 52056 Aachen, Germany e-mail: {meierling,volkm}@math2.rwth-aachen.de

#### Abstract

Let G be a finite and simple graph with vertex set V(G), and let  $f: V(G) \rightarrow \{-1,1\}$  be a two-valued function. If  $\sum_{x \in N[v]} f(x) \geq 1$  for each  $v \in V(G)$ , where N[v] is the closed neighborhood of v, then f is a signed dominating function on G. A set  $\{f_1, f_2, \ldots, f_d\}$  of signed dominating functions on G with the property that  $\sum_{i=1}^d f_i(x) \leq 1$  for each  $x \in V(G)$ , is called a signed dominating family (of functions) on G. The maximum number of functions in a signed dominating family on G is the signed domatic number on G. In this paper we investigate the signed domatic number of some circulant graphs and of the torus  $C_p \times C_q$ .

Keywords: Signed domatic number, Signed dominating function, Signed domination number, Circulant graphs, Torus graph.

AMS Subject Classification: 05C69

## 1 Terminology and introduction

We consider finite, undirected and simple graphs G with vertex set V(G). If v is a vertex of the graph G, then  $N(v) = N_G(v)$  is the open neighborhood of v, i.e., the set of all vertices adjacent with v. The closed neighborhood  $N[v] = N_G[v]$  of a vertex v consists of the vertex set  $N(v) \cup \{v\}$ . The number  $d_G(v) = d(v) = |N(v)|$  is the degree of the vertex  $v \in V(G)$ , and  $\delta(G)$  is the minimum degree of G. The cycle of order n is denoted by  $C_n$ . If  $A \subseteq V(G)$  and f is a mapping from V(G) into some set of numbers, then  $f(A) = \sum_{x \in A} f(x)$ .

The signed dominating function is defined in [2] as a two-valued function  $f: V(G) \rightarrow \{-1, 1\}$  such that  $\sum_{x \in N[v]} f(x) \geq 1$  for each  $v \in V(G)$ . The sum f(V(G)) is called

the weight w(f) of f. The minimum of weights w(f), taken over all signed dominating functions f on G, is called the *signed domination number* of G, denoted by  $\gamma_S(G)$ . Signed domination has been studied in [2], [3], [4], [7], [8] and [11]. Further information on this parameter can be found in the monographs [5] and [6] by Haynes, Hedetniemi and Slater.

A set  $\{f_1, f_2, \ldots, f_d\}$  of signed dominating functions on G with the property that  $\sum_{i=1}^{d} f_i(x) \leq 1$  for each vertex  $x \in V(G)$ , is called a signed dominating family on G. The maximum number of functions in a signed dominating family on G is the signed domatic number of G, denoted by  $d_S(G)$ . The signed domatic number was introduced by Volkmann and Zelinka [10]. Volkmann and Zelinka [10] and Volkmann [9] have determined the signed domatic number of complete graphs and complete bipartite graphs, respectively. In addition, Volkmann and Zelinka [10] presented the following two basic results, which are useful for our investigations.

Theorem 1.1 (Volkmann, Zelinka [10] 2005) If G is a graph, then

$$1 \le d_S(G) \le \delta(G) + 1.$$

Theorem 1.2 (Volkmann, Zelinka [10] 2005) The signed domatic number is an odd integer.

Next we derive a structural result on 2r-regular graphs with maximal possible signed domatic number.

**Theorem 1.3** Let G be a 2r-regular graph, and let u be an arbitrary vertex of G. If  $d = d_S(G) = 2r + 1$  and  $\{f_1, f_2, \ldots, f_d\}$  is a signed domatic family of G, then  $\sum_{i=1}^d f_i(u) = 1$  and  $\sum_{x \in N[u]} f_i(x) = 1$  for each  $u \in V(G)$  and each  $i \in \{1, 2, \ldots, 2r + 1\}$ .

**Proof.** Let u be an arbitrary vertex of G. Because of  $\sum_{i=1}^{d} f_i(u) \leq 1$ , this sum contains at least r summands which have the value -1. Using the fact that  $\sum_{x \in N[u]} f_i(x) \geq 1$  for each  $i \in \{1, 2, \ldots, 2r + 1\}$ , we observe that each of these sums contains at least r + 1 summands which have the value 1. Consequently, the sum

$$\sum_{x \in N[u]} \sum_{i=1}^{d} f_i(x) = \sum_{i=1}^{d} \sum_{x \in N[u]} f_i(x)$$
(1)

contains at least dr summands of value -1 and at least d(r+1) summands of value 1. As the sum (1) consists of exactly d(2r+1) summands, we conclude that  $\sum_{i=1}^{d} f_i(u)$  contains exactly r summands of value -1 and  $\sum_{x \in N[u]} f_i(x)$  contains exactly r+1 summands of value 1 for each  $i \in \{1, 2, \ldots, 2r+1\}$ . This leads to the desired result, and the proof is complete.  $\Box$ 

### 2 Circulant graphs

Following an article of Boesch and Tindell [1], for an integer  $n \geq 3$  and a subset S of  $\{1, 2, \ldots, \lfloor (n+2)/2 \rfloor\}$ , the *circulant graph*  $C_n(S)$  is a graph on n vertices  $u_1, u_2, \ldots, u_n$  such that each vertex  $u_i$  is adjacent to the the vertices  $u_{i\pm s}$  for  $s \in S$ , where the subscripts are taken modulo n. Certainly,  $C_n(\{1\})$  is isomorphic to the cycle  $C_n$  and  $C_n(\{1,2\})$  is isomorphic to the square  $C_n^2$  of  $C_n$ . It is easy to observe that circulant graphs are vertex-symmetric.

**Theorem 2.1** If G is the circulant graph  $C_n(\{1, 2, ..., r\})$ , then  $d_S(G) = 2r + 1$  if and only if  $n \equiv 0 \pmod{2r+1}$ .

**Proof.** Let G be the circulant graph  $C_n(\{1, 2, ..., r\})$  with vertex set  $\{u_1, u_2, ..., u_n\}$ . Since G is 2r-regular, Theorem 1.1 implies that  $d_S(G) \leq 2r + 1$ .

Suppose that  $n \equiv 0 \pmod{2r+1}$ . In this case, we define a signed dominating family  $\{f_1, f_2, \ldots, f_{2r+1}\}$  as follows:

$$f_i(u_i) = f_i(u_{i+1}) = \dots = f_i(u_{i+r-1}) = -1$$

and

$$f_i(u_{i+r}) = f_i(u_{i+r+1}) = \dots = f_i(u_{i+2r}) = 1$$

for i = 1, 2, ..., 2r+1, where the indices of the vertices are taken modulo 2r+1. For the remaining vertices  $u_{2r+1+k}$  with  $k \ge 1$ , we define the function  $f_i$  by  $f_i(u_{2r+1+k}) = f_i(u_k)$  for  $i \in \{1, 2, ..., 2r+1\}$ .

Suppose that n = k(2r+1) + s with  $s \in \{1, 2, ..., 2r\}$ . Assume that  $d_S(G) = d = 2r + 1$  and let  $\{f_1, f_2, ..., f_d\}$  be a corresponding signed dominating family. Let

$$A_0 = \{i : i \equiv j(2r+1) \pmod{n}, j \in \mathbb{N}_0\}$$

be the set of indices i we derive from 0 by adding a multiple of 2r + 1 modulo n. Let t be the greatest common divisor of s and 2r + 1, i.e., let s = pt and 2r + 1 = qt with p and q relatively prime. Let  $a \ge 1$  and  $b \ge 1$  be the smallest integers such that a(2r + 1) = bn = b[k(2r + 1) + s]. Then

$$a(2r+1) = b[k(2r+1) + s] \Leftrightarrow aqt = bt(kq+p) \Leftrightarrow aq = b(kq+p).$$

Since p and q are relatively prime, q divides b. Analogously, kq + p divides a. Hence, a = kq + p and b = q. It follows that  $|A_0| = kq + p$ . Analogously, for every  $\ell \in \{1, 2, ..., 2r\}$ , the set  $A_\ell = \{j : j \equiv \ell + i \pmod{n}, i \in A_0\}$  contains exactly kq + p elements. Therefore, the set  $\{1, 2, ..., n\}$  can be partitioned in t sets  $A_{j_1}, A_{j_2}, ..., A_{j_t}$  of size kq + p. Note that, by Theorem 1.3,  $\sum_{i=1}^d f_i(u_j)$  contains exactly r summands of value -1 for each  $j \in \{1, 2, ..., n\}$  and  $\sum_{x \in N[u_j]} f_i(x)$  contains exactly r + 1 summands of value 1 for each  $j \in \{1, 2, ..., n\}$  and  $i \in \{1, 2, ..., 2r + 1\}$ . It follows that  $f_i(v) = f_i(w)$  for every pair of vertices  $\{v, w\} \subseteq A_\ell$ , every  $i \in \{1, 2, ..., d\}$  and every  $\ell \in \{0, 1, ..., 2r\}$ . Furthermore,

note that each set  $A_{\ell}$  contains exactly q elements of  $\{1, 2, ..., 2r+1\}$ , by definition. This implies that

$$1 = \sum_{x \in N[u_{r+1}]} f_i(x) = t_1 q - t_2 q = q(t_1 - t_2)$$

with  $t_1 + t_2 = t$  and  $t_1 > t_2$  for an arbitrary  $i \in \{1, 2, ..., d\}$ . Hence, q = 1, a contradiction to pt = s < 2r + 1 = qt. So d < 2r + 1, and the proof is complete.  $\Box$ 

The least common multiple lcm(a, b) of two integers a and b is the smallest number greater than zero which is divisible by a and b.

**Theorem 2.2** Let G be the circulant graph  $C_n(\{d, 2d, \ldots, rd\})$ . Then  $d_S(G) = 2r + 1$  if and only if  $\frac{\operatorname{lcm}(n,d)}{d} \equiv 0 \pmod{2r+1}$ .

**Proof.** First we discuss the case r = 1. For an arbitrary vertex  $u_1$  we investigate the structure of the component  $F_1$  containing  $u_1$ . Clearly,  $u_1 \in V(F_1)$ , and since  $u_1$  is adjacent to  $u_{d+1}$ , it follows that  $u_{d+1} \in V(F_1)$ . The vertex  $u_{d+1}$  is adjacent to  $u_{2d+1}$ , and so  $u_{2d+1} \in V(F_1)$ . If we continue this process we finally arrive at  $u_{kd+1} = u_1$ . This leads to  $k = \frac{\operatorname{lcm}(n,d)}{d}$  and thus  $|V(F_1)| = \frac{\operatorname{lcm}(n,d)}{d}$ .

Furthermore, the definition of the circulant graph implies that  $u_{p-d} \in V(F_1)$  for every vertex  $u_p \in V(F_1)$ . However, for reason of symmetry these vertices were already taken up before.

For r > 1, we also have  $|V(F_1)| = \frac{\operatorname{lcm}(n,d)}{d}$ , but the number of edges could increase. In both cases the component  $F_1$  is isomorphic to  $C_{\underline{\operatorname{lcm}}(n,d)}(\{1,2,\ldots,r\})$ .

Possible further components  $F_2, F_3, \ldots, F_t$  of G are isomorphic to  $F_1$ . Applying Theorem 2.1, we obtain the desired result as follows:

$$d_{S}(G) = 2r + 1$$
  

$$\iff d_{S}(F_{i}) = 2r + 1 \quad \text{for all components } F_{i}, i \in \{1, 2, \dots, t\}$$
  

$$\iff \frac{\operatorname{lcm}(n, d)}{d} \equiv 0 \pmod{2r + 1} \square$$

# 3 The torus $C_p \times C_q$

The cartesian product  $G = G_1 \times G_2$  of two vertex disjoint graphs  $G_1$  and  $G_2$  has  $V(G) = V(G_1) \times V(G_2)$  and two vertices  $(u_1, u_2)$  and  $(v_1, v_2)$  of G are adjacent if and only if either  $u_1 = v_1$  and  $u_2v_2 \in E(G_2)$  or  $u_2 = v_2$  and  $u_1v_1 \in E(G_1)$ . The cartesian product of two cycles  $C_p$  and  $C_q$  is called a *torus*. The torus  $C_p \times C_q$  is 4-regular. Using Theorem 1.1 and 1.2, we obtain  $d_S(C_p \times C_q) \in \{1, 3, 5\}$ . Theorem 3.3 conveys a characterisation of the torus graphs with  $d_s(G) = 5$ . For clarity, in the folling figures the vertices x with f(x) = -1 are colored black.

#### **Theorem 3.1** If $q \geq 3$ , then

### $d_S(C_3 \times C_q) \neq 5$

**Proof.** Suppose on the contrary that  $d_S(C_3 \times C_q) = 5$ . Because of Theorem 1.3, there exists a signed dominating function f such that, without loss of generality,  $f(x_{1,2}) = f(x_{2,2}) = -1$ . This implies  $f(x_{1,1}) = f(x_{2,1}) = f(x_{3,2}) = f(x_{1,3}) = f(x_{2,3}) = 1$ , and thus it follows that  $f(x_{3,1}) = f(x_{3,3}) = 1$  (see Figure 1).



Figure 1

Hence  $\sum_{y \in N[x_{3,3}]} f(y) \ge 3$ , a contradiction to Theorem 1.3.

**Theorem 3.2** If  $q \ge 4$ , then

$$d_S(C_4 \times C_q) \neq 5.$$

**Proof.** Suppose on the contrary that  $d_S(C_4 \times C_q) = 5$ . Let f be an arbitrary signed dominating function, and let  $x_{2,2}$  be a vertex with  $f(x_{2,2}) = -1$ . Because of Theorem 1.3, there exists a vertex, say  $x_{3,2}$ , such that  $f(x_{3,2}) = -1$ . This implies  $f(x_{1,2}) = f(x_{2,1}) = f(x_{3,1}) = f(x_{4,2}) = f(x_{3,3}) = f(x_{2,3}) = 1$  (see Figure 2).



Now  $x_{1,j}$  is adjacent to  $x_{4,j}$  for  $j \in \{1, 2, 3, 4\}$  or  $x_{i,1}$  is adjacent to  $x_{i,4}$  for  $i \in \{1, 2, 3, 4\}$ .

**Case 1:** Assume that  $x_{1,j}$  is adjacent to  $x_{4,j}$  for  $j \in \{1, 2, 3, 4\}$ .

Subcase 1.1: Assume that  $f(x_{1,1}) = -1$ . This implies  $f(x_{1,3}) = 1$ . Hence, according to Theorem 1.3, we obtain  $f(x_{1,4}) = f(x_{2,4}) = -1$ . Now we conclude that  $f(x_{3,4}) = f(x_{4,4}) = 1$ . Hence  $\sum_{y \in N[x_{4,3}]} f(y) \ge 3$ , a contradiction to Theorem 1.3.

Subcase 1.2: Assume that  $f(x_{1,1}) = 1$ . This leads to  $f(x_{4,1}) = -1$ . Because of symmetry, the vertex  $x_{4,1}$  can be looked upon as the vertex  $x_{1,1}$  in Subcase 1.1.

**Case 2:** Assume that  $x_{i,1}$  is adjacent to  $x_{i,4}$  for  $i \in \{1, 2, 3, 4\}$ .

Subcase 2.1: Assume that  $f(x_{1,1}) = -1$ . This yields to  $f(x_{1,3}) = f(x_{2,4}) = 1$  and thus  $\sum_{y \in N[x_{2,3}]} f(y) = 3$ , a contradiction to Theorem 1.3.

Subcase 2.2: Assume that  $f(x_{1,1}) = 1$ . It follows that  $f(x_{1,4}) = f(x_{2,4}) = -1$ . Hence we obtain  $f(x_{3,4}) = f(x_{1,3}) = 1$ . This implies  $f(x_{4,3}) = -1$  and so  $f(x_{4,1}) = 1$ . We finally deduce that  $\sum_{y \in N[x_{3,1}]} f(y) \ge 3$ , a contradiction to Theorem 1.3.  $\Box$ 

**Theorem 3.3** If  $p \ge 3$  and  $q \ge 3$ , then

$$d_S(C_p \times C_q) = 5 \iff p \equiv 0 \pmod{5} \land q \equiv 0 \pmod{5}.$$

**Proof.** In view of Theorems 3.1 and 3.2, we assume in the following that  $p \ge 5$  and  $q \ge 5$ . The case p = q = 5 will be investigated at the end of the proof, and hence we assume first that  $p \ge 6$ . We denote the vertices with  $x_{i,j}$ , where  $j \in \{1, 2, \ldots, p\}$  and  $i \in \{1, 2, \ldots, q\}$ .

We assume that  $d_S(C_p \times C_q) = 5$ . Let f be an arbitrary signed domination function. First we show that f has a certain structure on a partial square with  $5 \times 5$  vertices.

Because of Theorem 1.3, there exists a signed dominating function f such that, without loss of generality,  $f(x_{2,2}) = f(x_{3,2}) = -1$ . This implies  $f(x_{1,2}) = f(x_{2,1}) = f(x_{3,2}) = f(x_{3,3}) = f(x_{2,4}) = f(x_{1,3}) = 1$  (see Figure 3).



Applying Theorem 1.3, we observe that either  $f(x_{2,5}) = -1$  or, without loss of generality,  $f(x_{3,4}) = -1$ .

**Case 1:** Assume that  $f(x_{2,5}) = -1$ . This leads to  $f(x_{1,4}) = f(x_{3,4}) = 1$  and either  $f(x_{3,5}) = 1$  or  $f(x_{1,5}) = 1$ , say  $f(x_{3,5}) = 1$  (see Figure 4). Thus  $\sum_{y \in N[x_{3,4}]} f(y) \ge 3$ , a contradiction to Theorem 1.3.



Figure 4

**Case 2:** Assume that  $f(x_{3,4}) = -1$ . This implies  $f(x_{1,4}) = f(x_{2,5}) = 1$  and either  $f(x_{4,4}) = -1$  or  $f(x_{3,5}) = -1$ .

Subcase 2.1: Assume that  $f(x_{4,4}) = -1$ . This yields to  $f(x_{3,5}) = f(x_{4,5}) = f(x_{4,3}) = -1$  $f(x_{5,4}) = 1$  (see Figure 5) and either  $f(x_{5,5}) = 1$  or  $f(x_{5,5}) = -1$ .



Subcase 2.1.1: Assume that  $f(x_{5,5}) = 1$ . This leads to  $f(x_{4,6}) = f(x_{3,6}) = -1$  and so  $f(x_{2,6}) = 1$  (see Figure 6). Thus  $\sum_{y \in N[x_{2,5}]} f(y) \ge 3$ , a contradiction to Theorem 1.3.



Subcase 2.1.2: Assume that  $f(x_{5,5}) = -1$ . Then we deduce that  $f(x_{5,3}) = 1$  and thus  $f(x_{4,2}) = f(x_{5,2}) = -1$ . This leads to  $f(x_{3,1}) = f(x_{4,1}) = f(x_{5,1}) = 1$  (see Figure 7). Hence  $\sum_{y \in N[x_{3,1}]} f(y) \ge 3$ , a contradiction to Theorem 1.3.



Figure 7

Subcase 2.2: Assume that  $f(x_{3,5}) = -1$ . Then we obtain  $f(x_{4,4}) = f(x_{4,5}) = f(x_{3,6}) = 1$ . It follows that  $f(x_{4,3}) = 1$  and thus  $f(x_{4,2}) = f(x_{5,3}) = -1$  and so  $f(x_{3,1}) = 1$ . If  $x_{3,6}$  is adjacent to  $x_{3,1}$ , then we arrive at the contradiction  $\sum_{y \in N[x_{3,1}]} f(y) \geq 3$ . Therefore we deduce that that  $f(x_{2,6}) = -1$  or  $f(x_{4,6}) = -1$  or  $f(x_{3,7}) = -1$ . Since  $f(x_{3,7}) = -1$  leads to the same situation as in Case 1, we investigate next the cases  $f(x_{2,6}) = -1$  or  $f(x_{4,6}) = -1$ .

Subcase 2.2.1: Assume that  $f(x_{2,6}) = -1$ . This implies  $f(x_{1,5}) = 1$  (see Figure 8), and we obtain the contradiction  $\sum_{y \in N[x_{1,4}]} f(y) \ge 3$ .



Subcase 2.2.2: Assume that  $f(x_{4,6}) = -1$ . This leads to  $f(x_{2,6}) = 1$ . It follows that  $f(x_{5,4}) = -1$  and therefore  $f(x_{5,2}) = f(x_{5,5}) = f(x_{6,3}) = f(x_{6,4}) = f(x_{6,2}) = 1$  (see Figure 9).

If  $f(x_{5,6}) = -1$ , then with the vertices  $x_{3,4}$ ,  $x_{3,5}$ ,  $x_{4,6}$  and  $x_{5,6}$ , we arrive at the situation of Subcase 2.1. Hence we assume that  $f(x_{5,6}) = 1$ . This yields to  $f(x_{6,5}) = -1$  (see Figure 9).

If  $f(x_{6,6}) = 1$ , then with the vertices  $x_{5,3}$ ,  $x_{5,4}$ ,  $x_{6,5}$  and  $x_{7,5}$ , we have the situation of Subcase 2.1. Thus we now assume that  $f(x_{6,6}) = -1$  (see Figure 9).



The vertices  $x_{i,j}$  for  $i, j \in \{2, 3, 4, 5, 6\}$  lead to a square with rows  $R_1, R_2, R_3, R_4, R_5$ and columns  $C_1, C_2, C_3, C_4, C_5$  with a fixed function f (see Figure 9). Now it is straightforward to verify that f is a signed dominating function only if  $p \equiv 0 \pmod{5}$  and  $q \equiv 0 \pmod{5}$ .

The following five functions  $f_1, f_2, f_3, f_4, f_5$  (see Figure 10) lead to a desired signed dominating family for p = q = 5.

For  $p = 5k_1$  and  $q = 5k_2$   $(k_1$  and  $k_2$  arbitrary) we enumerate the vertices with  $y_{i,j}$ ,  $i \in \{1, 2, \ldots, p\}, j \in \{1, 2, \ldots, q\}$  provided that  $y_{i,j}$  is adjacent to the vertices  $y_{i-1,j}$ ,  $y_{i+1,j}, y_{i,j-1}$  and  $y_{i,j+1}$ , where the indices are taken modulo p or modulo q, respectively. For  $y_{i,j}$  we have  $i = 5h_1 + i_0$  and  $j = 5h_2 + j_0$  with  $i_0, j_0 \in \{1, 2, 3, 4, 5\}$ . If we define  $g_k(y_{i,j}) = f_k(x_{i_0,j_0})$  for  $k \in \{1, 2, 3, 4, 5\}$ , then it is a simple matter to verify that each  $g_k$  is a signed dominating function. In this case we have  $\sum_{i=1}^5 g_i(y) = 1$  for every vertex  $y \in V(C_p \times C_q)$ , and thus  $\{g_1, g_2, g_3, g_4, g_5\}$  is a signed dominating family.  $\Box$ 

If  $p \equiv 0 \pmod{3}$  and  $q \geq 3$  is arbitrary, then we can show that  $d_S(C_p \times C_q) = 3$ .



## References

- F. Boesch and R. Tindell, Circulants and their connectivities, J. Graph Theory 8 (1984), 487-499.
- [2] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, and P.J. Slater, Signed domination in graphs. *Graph Theory, Combinatorics, and Applications*, John Wiley and Sons, Inc. 1 (1995), 311-322.

- [3] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996), 287-293.
- [4] J.H. Hattingh, M.A. Henning, and P.J. Slater, On the algorithmic complexity of signed domination in graphs, Australas. J. Combin. 12 (1995), 101-112.
- [5] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, Inc., New York (1998).
- [6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, editors, *Domination in Graphs*, *Advanced Topics*, Marcel Dekker, Inc., New York (1998).
- [7] M.A. Henning, Domination in regular graphs, Ars Combin. 43 (1996), 263-271.
- [8] M.A. Henning and P.J. Slater, Inequalities relating domination parameters in cubic graphs, *Discrete Math.* **158** (1996), 87-98.
- [9] L. Volkmann, Signed domatic numbers of the complete bipartite graphs Utilitas Math. 68 (2005), 71-77.
- [10] L. Volkmann and B. Zelinka, Signed domatic number of a graph, Discrete Appl. Math. 150 (2005), 261-267.
- [11] B. Zelinka, Some remarks on domination in cubic graphs, Discrete Math. 158 (1996), 249-255.