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Abstract

Let G be a finite and simple graph with vertex set V (G), and let f : V (G) →
{−1, 1} be a two-valued function. If

∑
x∈N [v] f(x) ≥ 1 for each v ∈ V (G), where

N [v] is the closed neighborhood of v, then f is a signed dominating function on
G. A set {f1, f2, . . . , fd} of signed dominating functions on G with the property
that

∑d
i=1 fi(x) ≤ 1 for each x ∈ V (G), is called a signed dominating family (of

functions) on G. The maximum number of functions in a signed dominating family
on G is the signed domatic number on G. In this paper we investigate the signed
domatic number of some circulant graphs and of the torus Cp × Cq.

Keywords: Signed domatic number, Signed dominating function, Signed dom-
ination number, Circulant graphs, Torus graph.

AMS Subject Classification: 05C69

1 Terminology and introduction

We consider finite, undirected and simple graphs G with vertex set V (G). If v is a vertex
of the graph G, then N(v) = NG(v) is the open neighborhood of v, i.e., the set of all
vertices adjacent with v. The closed neighborhood N [v] = NG[v] of a vertex v consists
of the vertex set N(v) ∪ {v}. The number dG(v) = d(v) = |N(v)| is the degree of the
vertex v ∈ V (G), and δ(G) is the minimum degree of G. The cycle of order n is denoted
by Cn. If A ⊆ V (G) and f is a mapping from V (G) into some set of numbers, then
f(A) =

∑
x∈A f(x).

The signed dominating function is defined in [2] as a two-valued function f : V (G) →
{−1, 1} such that

∑
x∈N [v] f(x) ≥ 1 for each v ∈ V (G). The sum f(V (G)) is called
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the weight w(f) of f . The minimum of weights w(f), taken over all signed dominating
functions f on G, is called the signed domination number of G, denoted by γS(G). Signed
domination has been studied in [2], [3], [4], [7], [8] and [11]. Further information on this
parameter can be found in the monographs [5] and [6] by Haynes, Hedetniemi and Slater.

A set {f1, f2, . . . , fd} of signed dominating functions on G with the property that∑d

i=1 fi(x) ≤ 1 for each vertex x ∈ V (G), is called a signed dominating family on G.
The maximum number of functions in a signed dominating family on G is the signed

domatic number of G, denoted by dS(G). The signed domatic number was introduced
by Volkmann and Zelinka [10]. Volkmann and Zelinka [10] and Volkmann [9] have de-
termined the signed domatic number of complete graphs and complete bipartite graphs,
respectively. In addition, Volkmann and Zelinka [10] presented the following two basic
results, which are useful for our investigations.

Theorem 1.1 (Volkmann, Zelinka [10] 2005) If G is a graph, then

1 ≤ dS(G) ≤ δ(G) + 1.

Theorem 1.2 (Volkmann, Zelinka [10] 2005) The signed domatic number is an odd
integer.

Next we derive a structural result on 2r-regular graphs with maximal possible signed
domatic number.

Theorem 1.3 Let G be a 2r-regular graph, and let u be an arbitrary vertex of G.
If d = dS(G) = 2r + 1 and {f1, f2, . . . , fd} is a signed domatic family of G, then∑d

i=1 fi(u) = 1 and
∑

x∈N [u] fi(x) = 1 for each u ∈ V (G) and each i ∈ {1, 2, . . . , 2r + 1}.

Proof. Let u be an arbitrary vertex of G. Because of
∑d

i=1 fi(u) ≤ 1, this sum contains
at least r summands which have the value −1. Using the fact that

∑
x∈N [u] fi(x) ≥ 1 for

each i ∈ {1, 2, . . . , 2r + 1}, we observe that each of these sums contains at least r + 1
summands which have the value 1. Consequently, the sum

∑

x∈N [u]

d∑

i=1

fi(x) =
d∑

i=1

∑

x∈N [u]

fi(x) (1)

contains at least dr summands of value −1 and at least d(r + 1) summands of value 1.
As the sum (1) consists of exactly d(2r + 1) summands, we conclude that

∑d

i=1 fi(u)
contains exactly r summands of value −1 and

∑
x∈N [u] fi(x) contains exactly r + 1 sum-

mands of value 1 for each i ∈ {1, 2, . . . , 2r +1}. This leads to the desired result, and the
proof is complete. �
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2 Circulant graphs

Following an article of Boesch and Tindell [1], for an integer n ≥ 3 and a subset S of
{1, 2, . . . , ⌊(n + 2)/2⌋}, the circulant graph Cn(S) is a graph on n vertices u1, u2, . . . , un

such that each vertex ui is adjacent to the the vertices ui±s for s ∈ S, where the subscripts
are taken modulo n. Certainly, Cn({1}) is isomorphic to the cycle Cn and Cn({1, 2})
is isomorphic to the square C2

n of Cn. It is easy to observe that circulant graphs are
vertex-symmetric.

Theorem 2.1 If G is the circulant graph Cn({1, 2, . . . , r}), then dS(G) = 2r + 1 if
and only if n ≡ 0 (mod 2r + 1).

Proof. Let G be the circulant graph Cn({1, 2, . . . , r}) with vertex set {u1, u2, . . . , un}.
Since G is 2r-regular, Theorem 1.1 implies that dS(G) ≤ 2r + 1.

Suppose that n ≡ 0 (mod 2r + 1). In this case, we define a signed dominating family
{f1, f2, . . . , f2r+1} as follows:

fi(ui) = fi(ui+1) = . . . = fi(ui+r−1) = −1

and
fi(ui+r) = fi(ui+r+1) = . . . = fi(ui+2r) = 1

for i = 1, 2, . . . , 2r+1, where the indices of the vertices are taken modulo 2r+1. For the
remaining vertices u2r+1+k with k ≥ 1, we define the function fi by fi(u2r+1+k) = fi(uk)
for i ∈ {1, 2, . . . , 2r + 1}.

Suppose that n = k(2r + 1) + s with s ∈ {1, 2, . . . , 2r}. Assume that dS(G) = d =
2r + 1 and let {f1, f2, . . . , fd} be a corresponding signed dominating family. Let

A0 = {i : i ≡ j(2r + 1) (mod n), j ∈ N0}

be the set of indices i we derive from 0 by adding a multiple of 2r + 1 modulo n. Let
t be the greatest common divisor of s and 2r + 1, i.e., let s = pt and 2r + 1 = qt
with p and q relatively prime. Let a ≥ 1 and b ≥ 1 be the smallest integers such that
a(2r + 1) = bn = b[k(2r + 1) + s]. Then

a(2r + 1) = b[k(2r + 1) + s] ⇔ aqt = bt(kq + p) ⇔ aq = b(kq + p).

Since p and q are relatively prime, q divides b. Analogously, kq+p divides a. Hence, a =
kq + p and b = q. It follows that |A0| = kq + p. Analogously, for every ℓ ∈ {1, 2 . . . , 2r},
the set Aℓ = {j : j ≡ ℓ+ i (mod n), i ∈ A0} contains exactly kq + p elements. Therefore,
the set {1, 2, . . . , n} can be partitioned in t sets Aj1, Aj2, . . . , Ajt

of size kq + p. Note

that, by Theorem 1.3,
∑d

i=1 fi(uj) contains exactly r summands of value −1 for each
j ∈ {1, 2, . . . , n} and

∑
x∈N [uj ]

fi(x) contains exactly r + 1 summands of value 1 for each

j ∈ {1, 2, . . . , n} and i ∈ {1, 2, . . . , 2r +1}. It follows that fi(v) = fi(w) for every pair of
vertices {v, w} ⊆ Aℓ, every i ∈ {1, 2, . . . , d} and every ℓ ∈ {0, 1, . . . , 2r}. Furthermore,
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note that each set Aℓ contains exactly q elements of {1, 2, . . . , 2r+1}, by definition. This
implies that

1 =
∑

x∈N [ur+1]

fi(x) = t1q − t2q = q(t1 − t2)

with t1 + t2 = t and t1 > t2 for an arbitrary i ∈ {1, 2, . . . , d}. Hence, q = 1, a contradic-
tion to pt = s < 2r + 1 = qt. So d < 2r + 1, and the proof is complete. �

The least common multiple lcm(a, b) of two integers a and b is the smallest number
greater than zero which is divisible by a and b.

Theorem 2.2 Let G be the circulant graph Cn({d, 2d, . . . , rd}). Then dS(G) = 2r + 1

if and only if lcm(n,d)
d

≡ 0 (mod 2r + 1).

Proof. First we dicuss the case r = 1. For an arbitrary vertex u1 we investigate
the structure of the component F1 containing u1. Clearly, u1 ∈ V (F1), and since u1 is
adjacent to ud+1, it follows that ud+1 ∈ V (F1). The vertex ud+1 is adjacent to u2d+1, and
so u2d+1 ∈ V (F1). If we continue this process we finally arrive at ukd+1 = u1. This leads

to k = lcm(n,d)
d

and thus |V (F1)| = lcm(n,d)
d

.
Furthermore, the definition of the circulant graph implies that up−d ∈ V (F1) for every

vertex up ∈ V (F1). However, for reason of symmetry these vertices were already taken
up before.

For r > 1, we also have |V (F1)| = lcm(n,d)
d

, but the number of edges could increase.
In both cases the component F1 is isomorphic to C lcm(n,d)

d

({1, 2, . . . , r}).

Possible further components F2, F3, . . . , Ft of G are isomorphic to F1. Applying The-
orem 2.1, we obtain the desired result as follows:

dS(G) = 2r + 1

⇐⇒ dS(Fi) = 2r + 1 for all components Fi, i ∈ {1, 2, . . . , t}

⇐⇒
lcm(n, d)

d
≡ 0 (mod 2r + 1) �

3 The torus Cp × Cq

The cartesian product G = G1 × G2 of two vertex disjoint graphs G1 and G2 has
V (G) = V (G1) × V (G2) and two vertices (u1, u2) and (v1, v2) of G are adjacent if and
only if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1). The cartesian
product of two cycles Cp and Cq is called a torus. The torus Cp ×Cq is 4-regular. Using
Theorem 1.1 and 1.2, we obtain dS(Cp × Cq) ∈ {1, 3, 5}. Theorem 3.3 conveys a char-
acterisation of the torus graphs with ds(G) = 5. For clarity, in the folling figures the
vertices x with f(x) = −1 are colored black.
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Theorem 3.1 If q ≥ 3, then
dS(C3 × Cq) 6= 5

Proof. Suppose on the contrary that dS(C3 × Cq) = 5. Because of Theorem 1.3, there
exists a signed dominating function f such that, without loss of generality, f(x1,2) =
f(x2,2) = −1. This implies f(x1,1) = f(x2,1) = f(x3,2) = f(x1,3) = f(x2,3) = 1, and thus
it follows that f(x3,1) = f(x3,3) = 1 (see Figure 1).

Figure 1
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Hence
∑

y∈N [x3,3]
f(y) ≥ 3, a contradiction to Theorem 1.3. �

Theorem 3.2 If q ≥ 4, then
dS(C4 × Cq) 6= 5.

Proof. Suppose on the contrary that dS(C4 × Cq) = 5. Let f be an arbitrary signed
dominating function, and let x2,2 be a vertex with f(x2,2) = −1. Because of Theorem 1.3,
there exists a vertex, say x3,2, such that f(x3,2) = −1. This implies f(x1,2) = f(x2,1) =
f(x3,1) = f(x4,2) = f(x3,3) = f(x2,3) = 1 (see Figure 2).

Figure 2
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Now x1,j is adjacent to x4,j for j ∈ {1, 2, 3, 4} or xi,1 is adjacent to xi,4 for i ∈
{1, 2, 3, 4}.

Case 1: Assume that x1,j is adjacent to x4,j for j ∈ {1, 2, 3, 4}.
Subcase 1.1: Assume that f(x1,1) = −1. This implies f(x1,3) = 1. Hence, according

to Theorem 1.3, we obtain f(x1,4) = f(x2,4) = −1. Now we conclude that f(x3,4) =
f(x4,4) = 1. Hence

∑
y∈N [x4,3] f(y) ≥ 3, a contradiction to Theorem 1.3.

Subcase 1.2: Assume that f(x1,1) = 1. This leads to f(x4,1) = −1. Because of
symmetry, the vertex x4,1 can be looked upon as the vertex x1,1 in Subcase 1.1.

5



14
 N

ov
em

be
r 2

00
8

FIN
AL D

RAFT

Case 2: Assume that xi,1 is adjacent to xi,4 for i ∈ {1, 2, 3, 4}.
Subcase 2.1: Assume that f(x1,1) = −1. This yields to f(x1,3) = f(x2,4) = 1 and

thus
∑

y∈N [x2,3] f(y) = 3, a contradiction to Theorem 1.3.

Subcase 2.2: Assume that f(x1,1) = 1. It follows that f(x1,4) = f(x2,4) = −1. Hence
we obtain f(x3,4) = f(x1,3) = 1. This implies f(x4,3) = −1 and so f(x4,1) = 1. We
finally deduce that

∑
y∈N [x3,1]

f(y) ≥ 3, a contradiction to Theorem 1.3. �

Theorem 3.3 If p ≥ 3 and q ≥ 3, then

dS(Cp × Cq) = 5 ⇐⇒ p ≡ 0 (mod 5) ∧ q ≡ 0 (mod 5).

Proof. In view of Theorems 3.1 and 3.2, we assume in the following that p ≥ 5 and
q ≥ 5. The case p = q = 5 will be investigated at the end of the proof, and hence we
assume first that p ≥ 6. We denote the vertices with xi,j , where j ∈ {1, 2, . . . , p} and
i ∈ {1, 2, . . . , q}.

We assume that dS(Cp ×Cq) = 5. Let f be an arbitrary signed domination function.
First we show that f has a certain structure on a partial square with 5 × 5 vertices.

Because of Theorem 1.3, there exists a signed dominating function f such that,
without loss of generality, f(x2,2) = f(x3,2) = −1. This implies f(x1,2) = f(x2,1) =
f(x3,2) = f(x3,3) = f(x2,4) = f(x1,3) = 1 (see Figure 3).

Figure 3
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Applying Theorem 1.3, we observe that either f(x2,5) = −1 or, without loss of
generality, f(x3,4) = −1.

Case 1: Assume that f(x2,5) = −1. This leads to f(x1,4) = f(x3,4) = 1 and either
f(x3,5) = 1 or f(x1,5) = 1, say f(x3,5) = 1 (see Figure 4). Thus

∑
y∈N [x3,4] f(y) ≥ 3, a

contradiction to Theorem 1.3.
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Figure 4
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Case 2: Assume that f(x3,4) = −1. This implies f(x1,4) = f(x2,5) = 1 and either
f(x4,4) = −1 or f(x3,5) = −1.

Subcase 2.1: Assume that f(x4,4) = −1. This yields to f(x3,5) = f(x4,5) = f(x4,3) =
f(x5,4) = 1 (see Figure 5) and either f(x5,5) = 1 or f(x5,5) = −1.

Figure 5
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Subcase 2.1.1: Assume that f(x5,5) = 1. This leads to f(x4,6) = f(x3,6) = −1 and so
f(x2,6) = 1 (see Figure 6). Thus

∑
y∈N [x2,5] f(y) ≥ 3, a contradiction to Theorem 1.3.

Figure 6
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Subcase 2.1.2: Assume that f(x5,5) = −1. Then we deduce that f(x5,3) = 1 and thus
f(x4,2) = f(x5,2) = −1. This leads to f(x3,1) = f(x4,1) = f(x5,1) = 1 (see Figure 7).
Hence

∑
y∈N [x3,1]

f(y) ≥ 3, a contradiction to Theorem 1.3.

Figure 7

h h h h

h h h h h

h h h h h

h h h h h

h h h h

x

x

x x

x

x x1

1

1

1

1

1

-1

-1

1

1

-1

1 1

1

1

1

-1-1

111

-1

-1

x1,2

x1,3

x1,4

x2,1

x2,2

x2,3

x2,4

x2,5

x3,1

x3,2

x3,3

x3,4

x3,5

x4,1

x4,2

x4,3

x4,4

x4,5

x5,1

x5,2

x5,3

x5,4

x5,5

Subcase 2.2: Assume that f(x3,5) = −1. Then we obtain f(x4,4) = f(x4,5) =
f(x3,6) = 1. It follws that f(x4,3) = 1 and thus f(x4,2) = f(x5,3) = −1 and so f(x3,1) = 1.
If x3,6 is adjacent to x3,1, then we arrive at the contradiction

∑
y∈N [x3,1] f(y) ≥ 3.

Therefore we deduce that that f(x2,6) = −1 or f(x4,6) = −1 or f(x3,7) = −1. Since
f(x3,7) = −1 leads to the same situation as in Case 1, we investigate next the cases
f(x2,6) = −1 or f(x4,6) = −1.

Subcase 2.2.1: Assume that f(x2,6) = −1. This implies f(x1,5) = 1 (see Figure 8),
and we obtain the contradiction

∑
y∈N [x1,4] f(y) ≥ 3.

Figure 8
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Subcase 2.2.2: Assume that f(x4,6) = −1. This leads to f(x2,6) = 1. It follows that
f(x5,4) = −1 and therefore f(x5,2) = f(x5,5) = f(x6,3) = f(x6,4) = f(x6,2) = 1 (see
Figure 9).

If f(x5,6) = −1, then with the vertices x3,4, x3,5, x4,6 and x5,6, we arrive at the
situation of Subcase 2.1. Hence we assume that f(x5,6) = 1. This yields to f(x6,5) = −1
(see Figure 9).
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If f(x6,6) = 1, then with the vertices x5,3, x5,4, x6,5 and x7,5, we have the situation of
Subcase 2.1. Thus we now assume that f(x6,6) = −1 (see Figure 9).

Figure 9
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The vertices xi,j for i, j ∈ {2, 3, 4, 5, 6} lead to a square with rows R1, R2, R3, R4, R5

and columns C1, C2, C3, C4, C5 with a fixed function f (see Figure 9). Now it is straight-
forward to verify that f is a signed dominating function only if p ≡ 0 (mod 5) and
q ≡ 0 (mod 5).

The following five functions f1, f2, f3, f4, f5 (see Figure 10) lead to a desired signed
dominating family for p = q = 5.

For p = 5k1 and q = 5k2 (k1 and k2 arbitrary) we enumerate the vertices with yi,j,
i ∈ {1, 2, . . . , p}, j ∈ {1, 2, . . . , q} provided that yi,j is adjacent to the vertices yi−1,j,
yi+1,j, yi,j−1 and yi,j+1, where the indices are taken modulo p or modulo q, respectively.
For yi,j we have i = 5h1 + i0 and j = 5h2 + j0 with i0, j0 ∈ {1, 2, 3, 4, 5}. If we define
gk(yi,j) = fk(xi0,j0) for k ∈ {1, 2, 3, 4, 5}, then it is a simple matter to verify that each
gk is a signed dominating function. In this case we have

∑5
i=1 gi(y) = 1 for every vertex

y ∈ V (Cp × Cq), and thus {g1, g2, g3, g4, g5} is a signed dominating family. �

If p ≡ 0 (mod 3) and q ≥ 3 is arbitrary, then we can show that dS(Cp × Cq) = 3.
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Figure 10

h h h h h

h h h h h

h h h h h

h h h h h

h h h h h

x1,1

x1,2

x1,3

x1,4

x1,5

x2,1

x2,2

x2,3

x2,4

x2,5

x3,1

x3,2

x3,3

x3,4

x3,5

x4,1

x4,2

x4,3

x4,4

x4,5

x5,1

x5,2

x5,3

x5,4

x5,5

x

x

x

x

x

x

x

x

x

x

f3

h h h h h

h h h h h

h h h h h

h h h h h

h h h h h

x1,1

x1,2

x1,3

x1,4

x1,5

x2,1

x2,2

x2,3

x2,4

x2,5

x3,1

x3,2

x3,3

x3,4

x3,5

x4,1

x4,2

x4,3

x4,4

x4,5

x5,1

x5,2

x5,3

x5,4

x5,5

x

x

x

x

x

x

x

x

x

x f2

h h h h h

h h h h h

h h h h h

h h h h h

h h h h h

x1,1

x1,2

x1,3

x1,4

x1,5

x2,1

x2,2

x2,3

x2,4

x2,5

x3,1

x3,2

x3,3

x3,4

x3,5

x4,1

x4,2

x4,3

x4,4

x4,5

x5,1

x5,2

x5,3

x5,4

x5,5

x

x

x

x

x

x

x

x

x

x

f1

h h h h h

h h h h h

h h h h h

h h h h h

h h h h h

x1,1

x1,2

x1,3

x1,4

x1,5

x2,1

x2,2

x2,3

x2,4

x2,5

x3,1

x3,2

x3,3

x3,4

x3,5

x4,1

x4,2

x4,3

x4,4

x4,5

x5,1

x5,2

x5,3

x5,4

x5,5

x

x

x

x

x

x

x

x

x

x

f5

h h h h h

h h h h h

h h h h h

h h h h h

h h h h h

x1,1

x1,2

x1,3

x1,4

x1,5

x2,1

x2,2

x2,3

x2,4

x2,5

x3,1

x3,2

x3,3

x3,4

x3,5

x4,1

x4,2

x4,3

x4,4

x4,5

x5,1

x5,2

x5,3

x5,4

x5,5

x

x

x

x

x

x

x

x

x

x

f4

References

[1] F. Boesch and R. Tindell, Circulants and their connectivities, J. Graph Theory 8
(1984), 487-499.

[2] J.E. Dunbar, S.T. Hedetniemi, M.A. Henning, and P.J. Slater, Signed domination
in graphs. Graph Theory, Combinatorics, and Applications, John Wiley and Sons,
Inc. 1 (1995), 311-322.

10



14
 N

ov
em

be
r 2

00
8

FIN
AL D

RAFT

[3] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996), 287-
293.

[4] J.H. Hattingh, M.A. Henning, and P.J. Slater, On the algorithmic complexity of
signed domination in graphs, Australas. J. Combin. 12 (1995), 101-112.

[5] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in

Graphs, Marcel Dekker, Inc., New York (1998).

[6] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, editors, Domination in Graphs,

Advanced Topics, Marcel Dekker, Inc., New York (1998).

[7] M.A. Henning, Domination in regular graphs, Ars Combin. 43 (1996), 263-271.

[8] M.A. Henning and P.J. Slater, Inequalities relating domination parameters in cubic
graphs, Discrete Math. 158 (1996), 87-98.

[9] L. Volkmann, Signed domatic numbers of the complete bipartite graphs Utilitas

Math. 68 (2005), 71-77.

[10] L. Volkmann and B. Zelinka, Signed domatic number of a graph, Discrete Appl.

Math. 150 (2005), 261-267.

[11] B. Zelinka, Some remarks on domination in cubic graphs, Discrete Math. 158
(1996), 249-255.

11


