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Abstract

An in-tournament is an oriented graph such that the negative neighborhood of every vertex

induces a tournament. A digraph D is cycle complementary if there exist two vertex-disjoint

directed cycles spanning the vertex set of D. Let D be a 2-connected in-tournament of order

at least 8. In this paper we show that D is not cycle complementary if and only if it is

2-regular and has odd order.
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1 Introduction

In 1990, Bang-Jensen [1] defined local tournaments to be the family of oriented graphs, i.e. digraphs
without loops, multiple arcs and cycles of length 2, where the positive as well as the negative
neighborhood of every vertex induces a tournament. In transfering the general adjacency only to
vertices that have a common negative or a common positive neighbor, local tournaments form an
interesting generalization of tournaments. Since then a lot of research has been done concerning
local tournaments, or the more general class of locally semicomplete digraphs, where there might be
cycles of length 2. In particular, the Ph.D. theses of Guo [11] and Huang [14] handeled this subject
in detail. For more information concerning different generalizations of tournaments, the reader
may be refered to the survey article of Bang-Jensen and Gutin [4]. In claiming adjacency only for
vertices that have a common positive neighbor, local tournaments can be further generalized to
the class of in-tournaments. An oriented graph D is called in-tournament if the set of negative
neighbors of each vertex of D induces a tournament. Some problems concerning in-tournaments
have been studied by Bang-Jensen, Huang and Prisner [6]. For information about the cycle
structure of in-tournaments see, for example, Peters and Volkmann [16], Tewes [19], [20] or Tewes
and Volkmann [21], [22].

Throughout this paper, cycles and paths are directed cycles and directed paths. Two subdigraphs
of a digraph D are called complementary if they are disjoint and span the vertex set of D. A
digraph is called cycle complementary if it has two complementary cycles. The general problem
of partitioning a highly connected tournament into two subtournaments of high connectivity was
mentioned by Thomassen (see Reid [17]). The first step towards the solution of this problem was
made by Reid [17] in 1985 by the following result.

Theorem 1.1 (Reid [17] 1985). Let T be a 2-connected tournament on n ≥ 6 vertices. Then T
contains two vertex-disjoint cycles of lengths 3 and n− 3 unless T is isomorphic to T 1

7 , where T 1
7

is the 3-regular tournament presented in Fig. 1.

This result is stronger in the way that one of the strongly connected subtournaments can be
specified to be a 3-cycle. For extensions, supplements and generalizations of Theorem 1.1 see, for
example, Song [18], Guo and Volkmann [13], Bang-Jensen, Guo and Yeo [3], Chen, Gould and Li
[9] and Gould and Guo [10].

An obvious necessary condition for a digraph D of order n to contain two complementary cycles is
that the girth of D is at most n/2. In [2], Bang-Jensen observed that the second power C2

2k+1
of an
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T 1
7 T 2

7 T6

Fig. 1: Three 2-connected local tournaments that are not cycle complementary.

odd cycle has girth k +1 and that the 2-regular digraph C2
2k+1 is a 2-connected local tournament.

This shows that Theorem 1.1 cannot be extended to local tournaments in general. Confirming
two conjectures by Bang-Jensen [2], Guo and Volkmann [12] proved that the second power of odd
cycles are the only exceptions when n ≥ 8.

Theorem 1.2 (Guo & Volkmann [12] 1994). Let D be a 2-connected local tournament on n ≥ 6
vertices. Then D has two complementary cycles if and only if D is not the second power of an
odd cycle and D is not a member of {T 1

7 , T 2
7 , T6}, where T 1

7 , T 2
7 and T6 are presented in Fig. 1.

In this paper we will show that Theorem 1.2 remains valid for the superclass of in-tournaments.
The proof is much more difficult than the one of Theorem 1.2, since the structural properties of
in-tournaments are not as strong as these of local tournaments.

2 Terminology and preliminary results

We assume that the reader is familiar with the basic concepts of graph theory and we refer to the
comprehensive books by Bondy and Murty [7] or by Bang-Jensen and Gutin [5] for information
which are not given here.

All digraphs mentioned in this paper are finite without loops and multiple arcs. For a digraph
D we denote by V (D) and E(D) the vertex set and arc set of D, respectively. The subdigraph
induced by a subset A of V (D) is denoted by D[A]. A cycle with the vertices x1, x2, . . . , xk and
the arcs x1x2, x2x3, . . . , xkx1 is called a k-cycle and is denoted by x1x2 . . . xkx1. If we consider
a k-cycle C = x1x2 . . . xkx1 in a digraph D, all subscripts appearing in related calculations are
taken modulo the cycle length k (note that x0 = xk). Let C[xi, xj ], where 1 ≤ i, j ≤ k, denote the
subpath xixi+1 . . . xj of C with initial vertex xi and terminal vertex xj . If x is a vertex of C, the
successor (predecessor) of x on C is denoted by x+

C (x−

C), and if no confusion arises, x+ and x−

will be used instead of x+

C and x−

C , respectively. The notations for paths are defined analogously.

If xy ∈ E(D), we say that x dominates y. If A and B are two disjoint subdigraphs of a digraph
D such that every vertex of A dominates every vertex of B, we say that A dominates B, denoted
by A → B. Furthermore, A  B denotes the fact that there is no arc leading from B to A and
at least one arc leading from A to B. In this case we also say that A weakly dominates B. The
outset (inset) N+(x) (N−(x)) of a vertex x is the set of positive (negative) neighbors of x. More
generally, for arbitrary subdigraphs A and B of D, the outset N+(A, B) is the set of vertices in B
to which there is an arc from a vertex in A, and the inset N−(A, B) is defined analogously. The
numbers |N+(x)| and |N−(x)| are called outdegree and indegree of x, respectively. We say that a
digraph D is k-regular if |N+(x)| = |N−(x)| = k for every vertex x of D.

If D is a strong digraph and S is a subset of V (D) such that D − S is not strong, we say that S
is a separating set. A separating set S is called minimal separating set (minimum separating set)
if there exists no separating set U such that U ⊆ S and U 6= S (|U | < |S|).
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The first result is a simple, but powerful observation on the interaction of a cycle and an external
vertex.

Lemma 2.1. Let D be an in-tournament containing a cycle C = u1u2 . . . utu1.

(a) If there exists a vertex x ∈ V (D) − V (C) such that d+(x, C) > 0, either x → C or ui → x →
ui+1 for some 1 ≤ i ≤ t.

(b) If P = v1v2 . . . vs is a path in D−V (C) such that d+(vs, C) > 0, either there exists an integer
1 ≤ i ≤ s such that vi → C, vi → P [vi+1, vs] and D has a cycle that consists of all vertices of
C and P [vi+1, vs] or D contains a Hamiltonian cycle of D[V (C) ∪ V (P )].

Proof. (a) Without loss of generality, let x → ut. Assume that x does not dominate C. Obviously,
x and ut−1 are negative neighbors of the vertex ut and hence, since D is an in-tournament, they
are adjacent. If ut−1 → x, we choose i = t − 1 and are done. Otherwise x → ut−1 which implies
the adjacency of the vertices ut−2 and x. Since x does not dominate C, we obtain i in at most
t − 1 steps.

(b) Using the first part of this lemma, we conclude that either vs → C or there exists an integer
1 ≤ j ≤ t such that uj → vs → uj+1. If vs → C, we choose i = s and are done. Otherwise note

that we can extend the cycle C by the vertex vs to a cycle C
′

and that d+(vs−1, C
′

) > 0. Using
these observations we obtain i in at most s steps.

Camion [8] proved in 1959 that a tournament is Hamiltonian if and only if it is strong. In 1993,
Bang-Jensen, Huang and Prisner [6] extended this result to in-tournaments.

Theorem 2.2 (Bang-Jensen, Huang & Prisner [6] 1993). An in-tournament is Hamiltonian if
and only if it is strong.

The previous results are useful for the analyzation of the structural properties of in-tournaments.

Theorem 2.3 (Bang-Jensen, Huang & Prisner [6] 1993). Let D be a strong in-tournament and
let S be a minimal separating set of D.

(a) If A and B are two distinct strong components of D − S, either there is no arc between them
or A weakly dominates B or B weakly dominates A. Furthermore, if A weakly dominates B,
the set N−(B, A) dominates B.

(b) If A and B are two distinct strong components of D−S such that A weakly dominates B, the
set N−(b, A) induces a tournament for each b ∈ B.

(c) The strong components of D − S can be ordered in a unique way D1, D2, . . . , Dp such that
there are no arcs from Dj to Di for j > i, and Di has an arc to Di+1 for i = 1, 2, . . . , p − 1.

According to Theorem 2.3, we give the following definition.

Definition 2.4. The unique labelling D1, D2, . . . , Dp of the strong components of D − S as de-
scribed in Theorem 2.3 is called the strong decomposition of D − S. We call D1 the initial and
Dp the terminal component.

The following results are immediate by Theorem 2.3.

Corollary 2.5 (Bang-Jensen, Huang & Prisner [6] 1993). Let D be a strong in-tournament and
let S be a minimal separating set of D. The strong decomposition of D − S has the following
properties.
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(a) If xi → xk for xi ∈ V (Di) and xk ∈ V (Dk) with 1 ≤ i 6= k ≤ p, then xi → Dj for every
i + 1 ≤ j ≤ k.

(b) The digraph D − S has a Hamiltonian path.

(c) For every s ∈ S we have d+(s, D1) > 0 and d−(s, Dp) > 0.

From the fact that every connected non-strong in-tournament has a unique strong decomposition,
we can find a further useful decomposition. This result plays an important role in our proof.

Theorem 2.6 (Structure Theorem). Let D be a strong in-tournament and let S be a minimal
separating set of D. There is a unique order D

′

1, D
′

2, . . . , D
′

r with r ≥ 2 of the strong components
of D − S such that

(a) D′

1 is the terminal component of D − S and D′

i consists of some strong components of D for
i ≥ 2;

(b) there exists a vertex x in the initial component of D′

i+1 and a vertex y in the terminal compo-
nent of D′

i+1 such that {x, y} dominates the initial component of D′

i for i = 1, 2, . . . , r − 1;

(c) there are no arcs between D′

i and D′

j for i, j satisfying |i − j| ≥ 2;

(d) if r ≥ 3, there exist no arcs from D′

i to S for i ≥ 3, S → D1 and S induces a tournament in
D.

Proof. Let D1, D2, . . . , Dp be the strong decompostion of D − S. We define (see Fig. 2)

D
′

1 = Dp, λ1 = p,

λi+1 = min
{

j | N+(Dj , D
′

i) 6= ∅
}

and
D

′

i+1 = D
[

V (Dλi+1
) ∪ V (Dλi+1+1) ∪ . . . ∪ V (Dλi−1)

]

.

So we have a new decomposition D′

1, D
′

2, . . . , D
′

r, where 2 ≤ r ≤ p, of D that satisfies (a).

By the definition of D′

i+1, there exists a strong component Dl of D′

i such that N+(Dλi+1
, Dl) 6= ∅.

Therefore we conclude from Corollary 2.5 (a) that there exists a vertex x ∈ V (Dλi+1
) such that

x → Dj for each j ∈ {λi+1, . . . , l}. From Theorem 2.3 (c) and Corollary 2.5, it follows that there
exists a vertex y ∈ V (Dλi−1) such that y → Dλi

. So (b) has been proved.

Note that if r = 2, there is nothing to prove in (c). If r ≥ 3 and i, j are two integers with i ≥ j +2,
there is no arc from D′

i to D′

j by the definition of λi−1. In addition, D contains no arc from D′

j

to D′

i by Theorem 2.3 (c).

Assume to the contrary that there is an arc xs from x ∈ V (D′

i) to s ∈ S, where i ≥ 3. Note that
Corollary 2.5 (c) states that s has a negative neighbor x′ in Dp. Since D is an in-tournament, it
follows that x and x′ are adjacent, a contradiction to (c).

Now we shall prove that S → D1. Note that we have d+(s, D1) > 0 for every vertex s ∈ S by
Corollary 2.5 (b). Now let s ∈ S be an arbitrary vertex. If D1 consists of a single vertex, there is
nothing to prove. Otherwise D1 has a Hamiltonian cycle by Theorem 2.2. Using Lemma 2.1 (a),
we deduce that either s → D1 or that s has a negative neighbor in D1. Thus, if s 6→ D1, the
vertex s has negative neighbors both in D1 and Dp, a contradiction to (c). This completes the
proof of this theorem.
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D′

r−1
D′

j D′

3
D′

2

D′

1

S

D1

D2

Dλr−1−1

Dλr−1

Dλr−2−1

Dλj

Dλj−1−1

Dλ3

Dλ2−1

Dλ2

Dp−1

Dp

Fig. 2: The decomposition of a strong in-tournament.

3 Main Results

In this paper we shall give the following complete characterization of 2-connected in-tournaments
which are cycle complementary.

Theorem 3.1 (Main Theorem). Let D be a 2-connected in-tournament on n ≥ 6 vertices that is
not a member of {T 1

7 , T 2
7 , T6} as presented in Fig. 1. Then D is not cycle complementary if and

only if D is 2-regular and |V (D)| is odd.

Proof of Main Theorem

We shall prove Theorem 3.1 for n ≥ 8. For n = 6 and n = 7 it is straightforward to verify the
desired result by means of a case by case analysis.

Suppose that D is k-connected, but not (k + 1)-connected (k ≥ 2). Then D has a separating set
S of size k. According to Corollary 2.5 (b) and Theorem 2.6, the digraph D − S is connected and
we have a new order D

′

1, D
′

2, . . . , D
′

r, where 2 ≤ r ≤ p, of the strong components D1, D2, . . . , Dp

of D − S such that there are only arcs from D
′

i+1 to D
′

i for i = 1, 2, . . . , r − 1.

Note that the k-connectivity of D implies that each subdigraph D
′

i, where 2 ≤ i ≤ r − 1, contains
at least k vertices. Furthermore, we may assume, without loss of generality, that every vertex of
S − s1 has at least two positive neighbors in D − S.

Claim. If
∑λ2−1

j=1
|V (Dj)| ≥ 2, we have |V (Di)| = 1 for each i ≤ λ2.

Proof. Assume that |V (Di)| ≥ 3 for an index i ≤ λ2. Let

A :=

λ2−1
⋃

j=1

V (Dj).

Since D is 2-connected, we have |N−(Di, A)| ≥ 2 which implies that D contains two distinct
vertices v1, v2 ∈ A that dominate Di. By a well-known result due to Menger [15] and Whitney
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[23], we obtain two vertex-disjoint paths leading from Di to {v1, v2} and therefore, by adding the
appropriate arcs from {v1, v2} to Di, two vertex-disjoint cycles C1, C2 in D. We choose C1 and
C2 such that |V (C1) ∪ V (C2)| is maximal. We will now show that V (C1) ∪ V (C2) = V (D) which
is a contradiction to our assumption that D is not cycle complementary.

Let u /∈ V (C1)∪V (C2) be an arbitrary vertex that has a positive neighbor in V (C1)∪ V (C2), say
N+(u, C1) 6= ∅. By Lemma 2.1 and the maximality of the cycles, it follows that u → C1. Note
that each of the two cycles contains at least one vertex of A, one vertex of Di and one vertex of
S. This implies that u has positive neighbors both in Di and S. With the help of Theorem 2.6
we conclude that u ∈ S.

By the observations above we conclude that V (D) − S ⊆ V (C1) ∪ V (C2). Note that each vertex
s ∈ S dominates D1 by Theorem 2.6. It follows that each vertex s ∈ S has a positive neighbor on
C1 or C2. In addition, if s ∈ S− (V (C1)∪V (C2)) has a positive neighbor on Cj , where j ∈ {1, 2},
the vertex s dominstes Cj and thus, N+(s, Di) 6= ∅. It follows that s → A by Theorem 2.6. The
latter implies that s has positive neighbors on both cycles. Since C1 and C2 were chosen maximal,
we conclude that s → C1 and s → C2 and thus, s → D−S, a contradiction to Corollary 2.5. This
completes the proof of this claim.

Suppose that D is not cycle complementary. We shall show below that then D is 2-regular and
|V (D)| is odd. We consider two cases, depending on the value of r.

Case 1: Let r ≥ 3. By Theorem 2.6, there exist no arcs from D′

i to S for i ≥ 3, S → D1 and S
induces a tournament. In addition, if k ≥ 4, the tournament D[S] is transitive, since otherwise an
arbitrary 3-cycle C3 of D[S] and a Hamiltonian cycle of D − C3 are complementary cycles of D.
Let s1s2 . . . sk be a Hamiltonian path of D[S]. Note that sk has at least two positive neighbors
outside of S. By the claim above we have |V (Di)| = 1 for each i ≤ λ2.

Note that for 3 ≤ j ≤ r there exists an unique Hamiltonian path xj
1x

j
2 . . . xj

nj
of D′

j such that xj
1 →

xj
l for each l > 1. In addition, if xj

1x
j
2 . . . xj

nj
is a Hamiltonian path of D′

j and xj−1

1 xj−1

2 . . . xj−1
nj−1

is a Hamiltonian path of D′

j−1, where j ≥ 2, the vertex xj
1 dominates Dλj−1

and xj
nj

dominates

xj−1

2 .

Subcase 1.1: Suppose that |V (Dp)| ≥ 3. Let C be a Hamiltonian cycle of Dp and let z1, z2 ∈ V (Dp)
be two vertices such that z1 → s1 and z2 → sk. Then

sk−1x
r
1x

r−1

1 . . . x2
1C[z+

2 , z1]s1s2 . . . sk−1

and
skxr

2x
r
3 . . . xr

nr
xr−1

2 xr−1
3 . . . xr−1

nr−1
. . . x2

2x
2
3 . . . x2

n2
C[z+

1 , z2]sk

are complementary cycles in D.

Subcase 1.2: Suppose that |V (Dp)| = 1. Note that in this case N+(Dp−1, S) 6= ∅. Let v ∈
V (Dp−1) be a vertex that has a positive neighbor in S. Then either v → si for an index i 6= k or
sk−1 → v → sk. In the latter case sk−1 has a negative neighbor u 6= v in D′

2.

Subcase 1.2.1: Suppose that |V (D
′

r)| ≥ 2. Then sk → xr
2 and sk−1 → xr

1.

Subcase 1.2.1.1: Suppose that |V (D
′

j)| ≥ 3 for an index 2 ≤ j ≤ r. If x2
n2

→ si, where i 6= k, the
cycles

C1 = sk−1x
r
1x

r−1

1 . . . xj
1x

j
nj

xj−1

2 xj−1

3 . . . xj−1
nj−1

. . . x2
2x

2
3 . . . x2

n2
sisi+1 . . . sk−1

and
C2 = skxr

2x
r
3 . . . xr

nr
. . . xj+1

2 xj+1

3 . . . xj+1
nj+1

xj
2x

j
3 . . . xj

nj−1x
j−1

1 xj−2

1 . . . x1
1sk

are vertex-disjoint. If i = 1, the cycles C1 and C2 are complementary in D. If i ≥ 2 and D[S] is
transitive, the path s1s2 . . . si−1 can be inserted in C2. Otherwise we have k = 3, i = 2 and D[S]
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induces the 3-cycle s1s2s3s1 in D. If s1 6→ C1, the vertex s1 can be inserted in C1. Otherwise
s1 → C1 and it follows that s1 → xr

2. But then

s2s3x
r
1x

r−1
1 . . . xj

1x
j
nj

xj−1

2 xj−1

3 . . . xj−1
nj−1

. . . x2
2x

2
3 . . . x2

n2
s2

and
s1x

r
2x

r
3 . . . xr

nr
. . . xj+1

2 xj+1

3 . . . xj+1
nj+1

xj
2x

j
3 . . . xj

nj−1x
j−1

1 xj−2

1 . . . x1
1s1

are complementary cycles of D.

If there exists no arc x2
n2

si in D such that i 6= k, we obtain sk−1 → x2
n2

→ sk. In this case

sk−1x
r
1x

r−1

1 . . . x1
1s1s2 . . . sk−1 and skxr

2x
r
3 . . . xr

nr
. . . x2

2x
2
3 . . . x2

n2
sk

show that D is cycle complementary.

Subcase 1.2.1.2: Suppose that D′

j is a 1-path for each 2 ≤ j ≤ r. Note that we have k = 2 in this
case. If D is not 2-regular, at least one of the following possibilities holds. The digraph D has an
arc

(i) s1z, where z ∈ V (D) −
{

s2, x
r
1, x

2
2, x

1
1

}

or

(ii) s2z, where z ∈ V (D) −
{

xr
1, x

r
2, x

1
1, s1

}

or

(iii) xj
1x

j−1

2 , where j ∈ {3, 4, . . . , r} or

(iv) x2
1s, where s ∈ S or

(v) x2
2s2.

But each such arc yields a contradiction to the fact that D is not cycle complementary which
means that D is 2-regular.

Subcase 1.2.2: Suppose that |V (D
′

r)| = 1.

Subcase 1.2.2.1: Suppose that r ≥ 4. Then sk → {xr
1, x

r−1

1 } and sk−1 → xr
1.

Subcase 1.2.2.1.1: Suppose that |V (D
′

j)| ≥ 3 for an index 2 ≤ j ≤ r− 1. If x2
n2

→ si, where i 6= k,
the cycles

C1 = sk−1x
r
1x

r−1

2 xr−1

3 . . . xr−1
nr−1

. . . x2
2x

2
3 . . . x2

n2
sisi+1 . . . sk−1 and C2 = skxr−1

1 xr−2

1 . . . x1
1sk

are vertex-disjoint. If i = 1, the cycles C1 and C2 are complementary in D. If i ≥ 2 and D[S] is
transitive, the path s1s2 . . . si−1 can be inserted in C2. Otherwise we have k = 3, i = 2 and D[S]
induces the 3-cycle s1s2s3s1 in D. If s1 6→ C1, the vertex s1 can be inserted in C1. Otherwise
s1 → C1 and it follows that s1 → xr−1

1 . But then

s2x
r
1x

r−1
2 xr−1

3 . . . xr−1
nr−1

. . . x2
2x

2
3 . . . x2

n2
s2 and s3s1x

r−1
1 xr−2

1 . . . x1
1s3

are complementary cycles of D.

If there exists no arc x2
n2

si in D such that i 6= k, then we obtain sk−1 → x2
n2

→ sk. In this case

sk−1x
r
1x

r−1
2 xr−1

3 . . . xr−1
nr−1

. . . xj+1

2 xj+1

3 . . . xj+1
nj+1

xj
2x

j
3 . . . xj

nj−1x
j−1

1 . . . x1
1s1s2 . . . sk−1

and
skxr−1

1 xr−2

1 . . . xj
1x

j
nj

xj−1

2 xj−1

3 . . . xj−1
nj−1

. . . x2
2x

2
3 . . . x2

n2
sk

show that D is cycle complementary.

Subcase 1.2.2.1.2: Suppose that D′

j is a 1-path for each 2 ≤ j ≤ r − 1. Note that we have k = 2

in this case. We consider the vertex x2
2.
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If x2
2 → s1, the cycles

s1x
r
1x

r−1
2 xr−2

2 . . . x2
2s1 and s2x

r−1
1 xr−2

1 . . . x1
1s1

are complementary in D.

Otherwise s1 → x2
2 → s2. By Theorem 2.6 it follows that s1 → D − {x1

1, x
2
2}. Therefore

s1x
r−1

1 xr−2

1 . . . x1
1s1 and s2x

r
1x

r−1

2 xr−2

2 . . . x2
2s2

show that D is cycle complementary.

Subcase 1.2.2.2: Suppose that r = 3. Note that D2 has at least k− 1 negative neighbors in S and
Dp−1 has at least k − 1 positive neighbors in S.

Subcase 1.2.2.2.1: Suppose that p ≥ 4.

If there exists a vertex s ∈ S such that s ∈ N+(Dp−1)∩N−(D2), it is easy to see that there exists
a subset A of D2 (where A 6= V (D2) if |V (D2)| ≥ 3) and a subset B of Dp−1 (where B 6= V (Dp−1)
if |V (Dp−1)| ≥ 3) such that the digraphs

H := D[{s} ∪ A ∪ B] and D − V (H)

are both strong.

If N+(Dp−1) ∩N−(D2) = ∅, we conclude that k = 2. We may assume, without loss of generality,
that s1 → s2 and N+(s1, D2) = N−(s2, Dp−1) = ∅.

If s2 → D2, there exists a subset X of D2 (where X 6= V (D2) if |V (D2)| ≥ 3) such that

H := D[{s2, x
1
1} ∪ X ] and D − V (H)

are both strong.

If s2 6→ D2, there exists a subset A of D2 (where A 6= V (D2) if |V (D2)| ≥ 3) and a subset B of
Dp−1 (where B 6= V (Dp−1) if |V (Dp−1)| ≥ 3) such that the digraphs

H := D[{s1, x
3
1} ∪ A ∪ B] and D − V (H)

are both strong.

Subcase 1.2.2.2.2: Suppose that p = 3.

If |V (D2)| ≥ 4, we consider the positive and the negative neighborhood of D2. The assumption
that there exists a vertex s ∈ S such that N+(D2, S) = S−s = N−(D2, S) leads to a contradiction,
since D is a k-connected in-tournament with k ≥ 2. Thus, S contains distinct vertices s1 6= s2

such that S − s2 ⊆ N+(D2), S − s1 ⊆ N−(D2) and s1 → s2. Let C be a Hamiltonian cycle of D2.

If s2 → D2, note that there are two distinct vertices z1 6= z2 in D2 such that z1 → s1 and z2 → x1
1.

But then
s2C[z+

1 , z2]x
1
1s2 and s1x

3
1C[z+

2 , z1]s1

are complementary cycles of D.

If s2 6→ D2, there exists a vertex z2 ∈ V (D2) such that z2 → s2 → z+

2 . Thus s1 and z2 are
adjacent.

If z2 → s1, note that there exists a vertex z1 6= z2 in D2 such that z1 → x1
1. Now

s2C[z+

2 , z1]x
1
1 and s1x

3
1C[z+

1 , z2]

are complementary cycles of D.

If s1 → z2, there exists a vertex z1 in D2 such that z1 → s1 → z+

1 .

8
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If z+
1 6= z2, we consider the vertex set A := V (C[z+

1 , z−2 ]). Since D is strong, we have N+(A)−A 6=
∅. If A ∋ a → s2, the cycles

s2x
3
1C[z+

1 , a]s2 and s1C[a+, z1]x
1
1s1

are complementary in D. If A ∋ a → z1
1 , the cycles

s2x
3
1C[z+

1 , a]x1
1s2 and s1C[a+, z1]s1

show that D is cycle complementary. Finally, if A ∋ a → b ∈ V (D2) − A, the cycles

C1 = s1C[z+

1 , a]C[b, z1]x
1
1s1 and C2 = s2x

3
1C[a+, z2]s2

are vertex-disjoint. By Lemma 2.1 each vertex v of C[z+

2 , b−] can either be inserted in C1 or
dominates C1. Obviously D is cycle complementary in the first case. In the latter case let v be a
vertex of C[z+

2 , b−] such that v → V (C1) ∪ V (C[v+, b−]) and |V (C[v+, b−])| is minimal. But then
the sets

{s2, x
3
1, x

1
1} ∪ V (C[a+, v]) and {s1} ∪ V (C[v+, a])

both induce strong in-tournaments in D. Theorem 2.2 implies that D is cycle complementary.

If z+

1 = z2, we shall show in the first step that N−(s1) = {z1, x
1
1} and N+(s1) = {s2, x

3
1, z

+

1 }. If
v 6= z1 is a negative neighbor of s1 in D2, the cycles

s1C[z+

1 , v]s1 and s2x
3
1C[v+, z1]x

1
1

are complementary in D. We may assume now that N−(s1, D2) = {z1}. If w 6= z+

1 is a positive
neighbor of s1 in D2, our assumption implies that s1 → z+

2 and thus,

s1C[z+

2 , z1]s1 and s2x
3
1z2x

1
1s2

are complementary cycles of D. Now note that N+(s1) = {s2, x
3
1, z

+

1 } is a minimal separating set
of D. Let A1, A2, . . . , Aq be the strong decomposition and A′

1, A
′

2, . . . , A
′

t be the decomposition
according to Theorem 2.6 of D − {s2, x

3
1, z

+
1 }. Then V (Aq) = {s1}, V (Aq−1) = {x1

1} and q ≥ 4.
If z1 /∈ V (A1), we obtain t ≥ 3 and q ≥ 4. This case is already solved. Otherwise z1 ∈ V (A1) and
t = 2. Note that x3

1 → A′

1 and that z+

1 has a positive neighbor in A1 by Theorem 2.6. Therefore
both

{s1, z
+

1 } ∪ V (A1) and {s2, x
3
1, x

1
1} ∪

q−2
⋃

i=2

V (Ai)

induce strong in-tournaments in D and thus, D is cycle complementary by Theorem 2.2.

If |V (D2)| = 3, we obtain k = 3 and |V (D)| = 8. Since |N+(S)| , |N+(D2)| ≥ k = 3, there exist
two non-incident arcs leading from D2 to S and two non-incident arcs leading from S to D2. Now
it is easy to check that D is cycle complementary.

Case 2: Let r = 2 (see Fig. 3). Note that N−(D1) = S = N+(Dp) and d+(si, D1), d−(si, Dp) ≥ 1
for every i ∈ {1, 2, . . . , k} (see Corollary 2.5 (c)). If we consider a strong component Di, all
predecessors and successors refer to the corresponding Hamiltonian cycle of Di, unless stated
otherwise. Furthermore, we may assume that r = 2 for any separating set S of size k. Now we
consider three subcases depending on the value of k.

Subcase 2.1: Suppose that k ≥ 4. Note that D1 contains a vertex that dominates Dp and that every
vertex s ∈ S has at least one negative neighbor in Dp. It follows that if |V (D1)| = 1 or S contains
a vertex that dominates D1, the digraph D has a 3-cycle C. Since D is at least 4-connected, the
remaining digraph D−V (C) is strong and hence, in view of Theorem 2.2, Hamiltonian. It follows
that D is cycle complementary.

Therefore we may assume that |V (D1)| ≥ 3 and that for every vertex si ∈ S, there exists a vertex
yi ∈ V (D1) such that yi → si → y+

i .

9
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Subcase 2.1.1: Suppose that |V (Dp)| ≥ 3.

Assume that p = 2. Since each vertex of S has a positive as well as a negative neighbor in D1,
it is possible to insert every vertex of S in a Hamiltonian cycle of D1. This extended cycle and a
Hamiltonian cycle of D2 are complementary cycles of D.

Therefore we may now assume that p ≥ 3. Let C be a Hamiltonian cycle of D1. If, without loss
of generality, y1 6= y2, there exist complementary paths P1 and P2 of Dp such that the terminal
vertex of P1 dominates s1 and the terminal vertex of P2 dominates s2. It follows that

C1 = s1C[y+

1 , y2]P1s1 and C2 = s2C[y+

2 , y1]D2D3 . . .Dp−1P2s2

are vertex-disjoint cycles in D. We show next that all vertices sm, where m ≥ 3, can be inserted
in at least one of these cycles. Note that the vertex sm has a positive neighbor y ∈ V (D1). If,
without loss of generality, y ∈ V (C1), the vertex sm can be inserted in C1 unless sm → C1. Let
P2 and Pm be complementary paths of Dp such that the terminal vertex of P2 dominates s2 and
the terminal vertex of Pm dominates sm. Then

sms1C[y+
1 , y2]Pmsm and s2C[y+

2 , y1]D2D3 . . . Dp−1P2s2

are vertex-disjoint cycles in D such that sm ∈ V (C1).

D′

2

D1

D2

Dp−1

D′

1

Dp

S

Fig. 3: The structure of D in Case 2.

Hence we may assume that yi = yj for all i, j ∈ {1, 2, . . . , k}, which implies that there exists a
vertex y ∈ V (D1) such that S → y. Note that S is a transitive tournament (otherwise S contains a
3-cycle and we are done). Let P = s1s2 . . . sk be the unique Hamiltonian path of S. Since yi = yj

for all i, j and S → y, we have (S− s1) → y+. It follows that D contains two vertex-disjoint paths
from {y, y+} to {sk−1, sk} and thus, we obtain two vertex-disjoint cycles C1, C2 in D by adding
the appropriate arcs from {sk−1, sk} to {y, y+}. Note that each of the cycles C1 and C2 contains
at least one vertex of D1 and one vertex of S. Using Lemma 2.1, we can show that the remaining
vertices in Dp, Dp−1, . . . , D2 can be inserted in at least one of these cycles. It remains to show the
same for the vertices of D1 and S.

At first we consider the set S. Note that si → sj for i < j and that sk and sk−1 have k and k − 1
positive neighbors in D1, respectively. In addition, recall that N−(s, Dp) 6= ∅ for all s ∈ S. Using

10
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these observations and Lemma 2.1, all vertices of S − {sk−1, sk} can be inserted in at least one of
the cycles.

Now consider the set D1. Assume that we have already inserted as much vertices as possible
in C1 and C2. Let C be a Hamiltonian cycle of D1 and let C[v, w] be a path in D1 such that
V (C[v, w]) ∩ V (Ci) = ∅ for i = 1, 2. Without loss of generality, w has a positive neighbor on C1.

If sk ∈ V (C1) (and sk−1 ∈ V (C2)), we deduce that w and s are adjacent for every vertex s ∈ S,
since (S−sk) → sk. Because of the maximality assumption for |V (C1) ∪ V (C2)|, we also know that
w → (S∩V (C1)). If there exists a vertex s ∈ (S∩V (C2)) that dominates w, the digraph D contains
a 3-cycle and thus, is cycle complementary. It follows that w → S and hence w → (V (C1)∪V (C2)).
But this implies that the path C[v, w] can be inserted in C2, a contradiction.

Otherwise sk−1 ∈ V (C1) (and sk ∈ V (C2)). Note that w particularly dominates V (C1) ∩ V (D1).
Furthermore, the set N+(sk, D1) ∩ V (C1) is not empty and hence, w and sk are adjacent. Now
the same argumentation as above yields a contradiction.

Subcase 2.1.2: Suppose that |V (Dp)| = 1. The case that p ≥ 3 can be solved analogously to
Subcase 2.1.1. Therefore it remains to check the case that p = 2. Let C be a Hamiltonian cycle
of D1.

Subcase 2.1.2.1: Suppose there exist two indices i 6= j such that yi 6= yj and si → sj . Then we
consider y+

i and y+

j . If y+

i = yj or y+

j = yi, the digraph D has a 3-cycle and it is immediate that
D is cycle complementary. Otherwise note that si and yj are adjacent. Therefore either si → yj

and siyjx
1
1si is a 3-cycle in D or yj → si and

C1 = siC[y+

i , yj ]si and C2 = sjC[y+

j , yi]x
1
1sj

are vertex-disjoint cycles in D such that V (D) − (V (C1) ∪ V (C2)) = S − {si, sj}. Now we can
show analogously to Subcase 2.1.1 that D is cycle complementary.

Subcase 2.1.2.2: Suppose there exist two integers i 6= j such that yi = yj and y+

i = y+

j and neither
si nor sj can be inserted at another position of the Hamiltonian cycle C of D1. Then, following
Subcase 2.1.1 (|V (Dp)| ≥ 3, p ≥ 3 and yi = yj for all i, j ∈ {1, 2, . . . , k}), we see that D has
complementary cycles.

Subcase 2.1.2.3: Suppose that |{y1, y2, . . . , yk}| = k and E(D[S]) = ∅.

If y+

i = yj for some i, j ∈ {1, 2, . . . , k}, the digraph D has a 3-cycle and we are done. Otherwise,
since k ≥ 4, there exist vertices si 6= sj in S such that x1

1 has a negative neighbor v1 6= y+

i on
C[y+

i , y−

j ] and a negative neighbor v2 6= y+

j on C[y+

j , y−

i ]. Furthermore, we may assume, without
loss of generality, that yi → yj and thus,

C1 = siC[y+

i , v1]x
1
1si and C2 = sjC[y+

j , yi]yjsj

are vertex-disjoint cycles in D. Consider the vertices on C[v+
1 , y−

1 ]. Using Lemma 2.1, it follows
that all these vertices can be inserted in C2 unless there exists a vertex u ∈ V (C[v+

1 , y−

1 ]) with the

following properties: D contains a Hamiltonian cycle C
′

2 of V (C2)∪ V (C[u+, y−

1 ]) and u → C
′

2. It

follows that C
′

2 and C
′

1 = siC[y+

i , u]x1
1s1 are vertex-disjoint cycles in D that contain all vertices

of D except S − {si, sj}. Now let m /∈ {i, j}. Since x1
1 → sm and x1

1 ∈ V (C1), the vertex sm can
be inserted in C1 if N+(sm, C1) 6= ∅. Therefore we may assume that sm has a positive neighbor
on C

′

2 and thus, sm can be inserted in C
′

2 unless sm → C
′

2. But the latter implies that sm and sj

are adjacent, a contradiction.

Subcase 2.2: Suppose that k = 3. First we show that the digraph D has a separating set S =
{s1, s2, s3} such that s1s2s3s1 is a 3-cycle in D. For this it suffices to show that D contains a 3-
cycle. Following the proof of Subcase 2.1, in all cases except the last we either find a separating set
S of D which has the appropriate condition or we see that D is cycle complementary. It remains
to check Subcase 2.1.2.3 (p = 2, |V (D1)| ≥ 3, |V (D2)| = 1, |{y1, y2, y3}| = 3 and E(D[S]) = ∅). In
addition, we may assume that y+

i 6= yj for all i, j ∈ {1, 2, 3}. Now we consider the vertices y1, y2

11
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and y3. Since yi ∈ N−(x1
1) for each i ∈ {1, 2, 3}, the subdigraph D[{y1, y2, y3}] is a tournament.

We may assume, without loss of generality, that y1 → y2. If y3 is on C[y+

1 , y2], we can show that
D is cycle complementary following the proof in Subcase 2.1.2.3. Therefore we may assume that
y3 is a vertex of the path C[y+

2 , y1]. Analogously we deduce that D has the arcs y3y1 and y2y3 and
thus, D contains the 3-cycle y1y2y3y1. Hence, we may assume that S = {s1, s2, s3} is a separating
of D such that s1s2s3s1 is a 3-cycle.

Subcase 2.2.1: Suppose that |V (Dp)| ≥ 3.

Subcase 2.2.1.1: Suppose that |V (D1)| ≥ 3 or p ≥ 3.

Subcase 2.2.1.1.1: Assume that |V (D1)| ≥ 3 and there exists a vertex of S that dominates D1,
say s1 → D1. Since k = 3, there exist vertices y1, y2, y3 ∈ V (D1) such that {y1, y2, y3} → D2 and
at least one of these vertices, say y1, dominates Dp. If S does not dominate D1, we can choose
y1 such that y1 → si → y+

1 , where i = 2 or i = 3. Furthermore, D has three non-incident arcs

zjsj, where j = 1, 2, 3, leading from Dp to S. Let C and C
′

be Hamiltonian cycles of D1 and Dp,
respectively. If i = 2, the cycles

s3s1C[y+

2 , y1]C
′

[z+

2 , z3]s3 and s2C[y+

1 , y2]D2D3 . . .Dp−1C
′

[z+

3 , z2]s2

and if i = 3, the cycles

s1C[y+
2 , y1]C

′

[z+
2 , z1]s1 and s2s3C[y+

1 , y2]D2D3 . . .Dp−1C
′

[z+
1 , z2]s2

are complementary in D.

Subcase 2.2.1.1.2: Assume that |V (D1)| ≥ 3 and no vertex of S dominates D1. Then we deduce
that p ≥ 3 (otherwise D2 and D−V (D2) are strong complementary subdigraphs of D). This case
can be solved analogously to Subcase 2.1.1.

Subcase 2.2.1.1.3: Assume that |V (D1)| = 1 and p ≥ 3. Then |V (D2)| = 1, since otherwise D2

and D − V (D2) are strong complementary subdigraphs of D. We may assume, without loss of
generality, that s1 → D2 and thus,

s1D2D3 . . . Dp−1C
′

[z+
2 , z1]s1 and s2s3D1C

′

[z+
1 , z2]s2

are complementary cycles of D, where z1, z2 and C
′

are chosen as in Subcase 2.2.1.1.1.

Subcase 2.2.1.2: Suppose that |V (D1)| = 1 and p = 2. Then S → D1 and |V (D2)| ≥ 4, since
|V (D)| ≥ 8. In addition, we have |N+(si, D2)| ≥ 1 for each i ∈ {1, 2, 3} and |N+(S, D2)| ≥ 2.
Furthermore, D has three non-incident arcs leading from D2 to S. Let C = b1b2 . . . btb1 be a
Hamiltonian cycle of D2, where t ≥ 4. We may assume, without loss of generality, that D has the
arcs b1s1, bis2 and bjs3, where 2 ≤ i 6= j ≤ t.

If there exists an arc bqb2 leading from C[b3, bt] to b2, the cycles

b2b3 . . . bqb2 and s1s2s3x
2
1C[bq+1, b1]s1

are complementary in D. Hence, since k ≥ 3, at least one vertex of S dominates b2. We consider
the three cases si → b2 for i ∈ {1, 2, 3}.

Subcase 2.2.1.2.1: If s3 → b2, the cycles

s2s3C[b2, bi]s2 and s1x
2
1C[bi+1, b1]s1

are complementary in D.

Subcase 2.2.1.2.2: Suppose that s2 → b2 and s3 /∈ N−(b2). In this case

C1 = s2C[b2, bi]s2 and C2 = s1x
2
1C[bi+1, b1]s1

are vertex-disjoint cycles that contain all vertices of D but s3.

12



30
 Ja

nu
ary

 20
08

FIN
AL D

RAFT

If bm → s3 → bm+1 for some index m /∈ {1, i}, we can insert s3 in one of these cycles and we are
done.

Otherwise we deduce that N+(s3, C[b2, bi]) = ∅ and bi → s3 → C[bi+1, b1]. It follows that
2 ≤ j ≤ i − 1. We can analogously show that N+(s1, C[bi+1, bj ]) = ∅ and bj → s1 → C[bj+1, bi]
and that N+(s2, C[bj+1, b1]) = ∅ and b1 → s2 → C[b2, bj]. Note that s1, s3 /∈ N−(b2). Hence
s2x

2
1b1s2 is a 3-cycle and a separating of D such that the initial component of D −

{

s2, x
2
1, b1

}

is
the single vertex b2. It follows that b2 → {s1, s3, b3, b4, . . . , bt}.

If bqs is an arc of D, where 3 ≤ q ≤ t − 1, the cycles

b2bq+1bq+2 . . . b2 and ss+s−x2
1C[b3, bq]s

are complementary in D.

Therefore we may assume that N−(S) = {bt, b1, b2} (which implies that j = 2 and i = t). It
follows that C3 = b1b2btb1 is a 3-cycle and a separating set of D. Furthermore, since S → x2

1 →
C[b3, bt−1], the digraph D−V (C3) has at least three strong components. We have solved this case
in Subcase 2.2.1.1.

Subcase 2.2.1.2.3: Suppose that N−(b2) =
{

b1, s1, x
2
1

}

. Then N−(b2) induces a 3-cycle in D and
is a separating set of D such that the initial component of D − {b1, s1, x

2
1} is the single vertex b2.

Hence, we obtain complementary cycles of D following the argumentation in Subcase 2.2.1.2.2.

Subcase 2.2.2: Suppose that |V (Dp)| = 1. Since |V (D)| ≥ 8 and k = 3, we have |V (D
′

2)| ≥ 4.
Furthermore, |N+(Dp−1, S)| ≥ 2 and therefore we may assume, without loss of generality, that
{s1, s2} ⊆ N+(Dp−1).

Subcase 2.2.2.1: Suppose that p ≥ 3 and |V (D1)| ≥ 3.

Subcase 2.2.2.1.1: Assume that at least two vertices of S dominate D1, say {s1, s2} → D1. Then
there exist two distinct vertices y1 6= y2 in D1 such that y1 → x1

1 and y2 → D2. If s3 6→ D1, we
can choose y1 such that y1 → s3 → y+

1 . Furthermore, we may assume that s1 ∈ N+(Dp−1). Let
C be a Hamiltonian cycle of D1. It follows that

C1 = s1C[y+

1 , y2]D2D3 . . . Dp−1s1 and C2 = s2C[y+

2 , y1]x
1
1s2

are vertex-disjoint cycles in D that include all vertices of D but s3. Note that s3 → s1. By
Lemma 2.1, the vertex s3 either can be inserted in C1 or s3 → C1. In the first case it is immediate
that D is cycle complementary and in the latter case s2 ∈ N+(Dp−1). But then

s2C[y+

1 , y2]D2D3 . . . Dp−1s2 and s3s1C[y+

2 , y1]x
1
1s3

show that D is cycle complementary.

Subcase 2.2.2.1.2: Assume that exactly one vertex of S, say s1, dominates D1.

If s2 ∈ N+(Dp−1), we choose a vertex y1 ∈ V (D1) such that y1 → s2 → y+

1 . Let C be a
Hamiltonian cycle of D1. Then

s3s1C[y+

2 , y1]x
1
1s3 and s2C[y+

1 , y2]D2D3 . . . Dp−1s2

are complementary cycles of D.

Otherwise we have N+(Dp−1) = {x1
1, s1, s3}. Now we choose y1 such that y1 → s3 → y+

1 and we
consider

C1 = s1C[y+

2 , y1]x
1
1s1 and C2 = s3C[y+

1 , y2]D2D3 . . .Dp−1s3.

These cycles are vertex-disjoint and contain all vertices of D except s2. It follows that s2 → Dj

for j = 2, 3, . . . , p − 1 (otherwise C2 can be extended by s2). Hence

s2D2D3 . . .Dp−1x
1
1s2 and s3s1C[y+

1 , y1]s3
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are complementary cycles of D.

Subcase 2.2.2.1.3: Assume that all vertices of S can be inserted in the Hamiltonian cycle D1. This
case can be solved analogously to Subcase 2.1.2.

Subcase 2.2.2.2: Suppose that p ≥ 3 and |V (D1)| = 1. Then S → x2
1 and |V (D2)| = 1, since

otherwise D2 and D − V (D2) are strong complementary subdigraphs of D. Since k ≥ 3, at least
one vertex of S, say s1, dominates x2

2.

If s1 ∈ N+(Dp−1), the cycles

s1D2D3 . . . Dp−1s1 and s2s3x
2
1x

1
1s2

are complementary in D.

Otherwise we have N+(Dp−1) = {x1
1, s2, s3} and

s3s1D2D3 . . . Dp−1s3 and s2x
2
1x

1
1s2

show that D is cycle complementary.

Subcase 2.2.2.3: Suppose that p = 2. Then |V (D1)| ≥ 4. Let C = a1a2 . . . aqa1 be a Hamiltonian
cycle of D1, where q ≥ 4. Since k = 3, |V (D2)| = 1 and s1s2s3s1 is a 3-cycle in D, all vertices of
S can be inserted in C.

Subcase 2.2.2.3.1: Suppose that D1 contains vertices ai, aj , am such that ai → s1 → ai+1,
aj → s2 → aj+1 and am → s3 → am+1 and 1 ≤ i < j < m ≤ q. Then, since q ≥ 4, we may
assume, without loss of generality, that i + 1 6= j. Note that s1 and aj are adjacent.

If D has the arc ajs1, the cycles

s1C[ai+1, aj]s1 and s2C[aj+1, am]s3C[am+1, ai]x
1
1s2

are complementary in D.

Otherwise s1 → aj and C3 = s1ajx
1
1s1 is a 3-cycle in D. If D − V (C3) is strong, we are done. If

|N+(x, D−V (C3))| ≥ 1 for all vertices x ∈ V (D)−V (C3), the terminal component of D−V (C3)
is not a single vertex. We have solved this case in Subcase 2.2.1. Hence, we may assume that
N+(aj−1) = V (C3). If ai → aj , the cycles

s1C[ai+1, aj−1]s1 and s2C[aj+1, am]s3C[am+1, ai]ajx
1
1s2

are complementary in D. Therefore we may assume that D has the arc ajai. Now we consider the

3-cycle C
′

3 = s1ajais1. Following the argumentation above, we deduce that N+(ai−1) = V (C
′

3).
But then

aiai+1 . . . ajai and s1s2C[aj+1, am]s3C[am+1, ai−1]x
1
1s1

show that D is cycle complementary. We can analogously solve the case 1 ≤ i < m < j ≤ q.

Subcase 2.2.2.3.2: Suppose that ai, aj and am can be chosen such that | {i, j, m} | = 2, but not such
that | {i, j, m} | = 3. We may assume, without loss of generality, that ai = aj and ai+1 = aj+1. It
follows that s3 and ai are adjacent.

If ai → s3, the cycles
s3C[am+1, ai]s3 and s1s2C[ai+1, am]x1

1s1

are complementary in D.

Othwerwise s3 → ai and C3 = s3aix
1
1s3 is a 3-cycle in D. Like in Subcase 2.2.2.3.1 it follows that

N+(ai−1) = V (C3) and thus,

s2s3ais2 and s1C[ai+1, ai−1]x
1
1

show that D is cycle complementary.
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Subcase 2.2.2.3.3: Suppose that ai, aj and am can be chosen such that |{i, j, m}| = 1, but not
such that |{i, j, m}| > 1. This case can be solved analogously to Subcase 2.1.2.

Subcase 2.3: Suppose that k = 2.

Subcase 2.3.1: Suppose that |V (Dp)| ≥ 3. Note that the case p ≥ 3 and |V (D1)| ≥ 3 can be solved
analogously to Subcase 2.2.

Subcase 2.3.1.1: Suppose that p ≥ 3 and |V (D1)| = 1. Then D[S] is a tournament and we may
assume, without loss of generality, that s1 → s2.

If |V (D2)| ≥ 3, it is easy to see that D2 and D − V (D2) are complementary strong subdigraphs
of D.

Otherwise we have |V (D2)| = 1. Since |N−(D2)| ≥ 2 and N−(D2) ⊆ (V (D1)∪S), it is immediate
that D2 has at least one negative neighbor si in S. Let P1 and P2 be complementary paths of Dp

such that the last vertex of Pj dominates sj for j = 1, 2. Then

s3−ix
2
1P3−is3−i and siD2D3 . . .Dp−1Pisi

are complementary cycles of D.

Subcase 2.3.1.2: Suppose that p = 2 and |V (D1)| ≥ 3.

If both s1 and s2 have positive and negative neighbors in D1, a Hamiltonian cycle of D1 can be
extended by s1 and s2. This extended cycle and a Hamiltonian cycle of D2 are complementary
cycles of D.

Therefore we may assume that at least one vertex of S dominates D1. If S → D1, the digraph D
is cycle complementary, since |N−(D2, D1)| , |N−(S, D2)| ≥ 2. Otherwise we assume that si → D1

and that s3−i has positive and negative neighbors in D1 for an index i ∈ {1, 2}. It follows that
D1 contains vertices y1 6= y2 such that y1 → D2 and y2 → s3−i → y+

2 . Let P1 and P2 be
complementary paths of Dp such that the last vertex of Pj dominates sj for j = 1, 2 and let C be
a Hamiltonian cycle of D1. Then

siC[y+

1 , y2]Pisi and s3−iC[y+

2 , y1]P3−is3−i

are complementary cycles of D.

Subcase 2.3.1.3: Suppose that p = 2 and |V (D1)| = 1. Then |V (D2)| ≥ 5, since |V (D)| ≥ 8.
Furthermore, D[S] is a tournament and hence we may assume, without loss of generality, that
s1 → s2. Let C = b1b2 . . . btb1 be a Hamiltonian cycle of D2, where t ≥ 5. Since k = 2, we have
|N−(s1, D2)| ≥ 2, |N+(s2, D2)| ≥ 1 and |N−(s2, D2)| ≥ 1. Therefore we may assume, without
loss of generality, that D has the arcs b1s1, bis2 and s2bi+1, where i 6= 1. It follows that D has no
arc bqb2 leading from C[b3, bt] to b2, because otherwise

bqb2b3 . . . bq and s1s2x
2
1C[bq+1, b1]s1

are complementary cycles of D.

Subcase 2.3.1.3.1: Suppose that bi+1 /∈ N−(s1). We may assume, without loss of generality, that
s1 has no negative neighbor on C[bi+1, bt]. Considering D − b1, it is immediate that D has an arc
leading from C[bi+1, bt] to

{

b2, b3, . . . , bi, s1, s2, x
2
1

}

, since D is 2-connected.

If D has an arc bjs2, where i+2 ≤ j ≤ t, we obtain s1 → {bi+1, bi+2, . . . , bj} because of the choice
of b1. It follows that

s1C[bi+1, b1]s1 and s2x
2
1C[b2, bi]s2

are complementary cycles of D.

Otherwise D has an arc bjbm, where i + 1 ≤ j ≤ t and 3 ≤ m ≤ i. In this case

C1 = s1x
2
1C[bj+1, b1]s1 and C2 = s2C[bi+1, bj]C[bm, bi]s2
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are vertex-disjoint cycles in D. Using Lemma 2.1, it follows that there exists a vertex bq, where
2 ≤ q ≤ m − 1, such that all vertices of C[bq+1, bm−1] can be inserted in C2 and bq → V (C2) ∪
V (C[bq+1, bm−1]). Hence, D has particularly the arc bqbi+1 and thus,

C
′

1 = bqC[bi+1, bq] and C
′

2 = s2x
2
1C[bq+1, bi]s2

are vertex-disjoint cycles in D such that C
′

1 and C
′

2 contain all vertices of D except s1. Since
s1 → x2

1, we conclude that s1 → C
′

2 which implies that D has the arc s1bm. Because of the choice
of b1, it now follows that s1 → C[bi+1, bj] and thus, the cycles

s1C[bi+1, b1]s1 and s2x
2
1C[b2, bi]s2

show that D is cycle complementary.

Subcase 2.3.1.3.2: Suppose that bi+1 ∈ N−(s1). Then we may assume, without loss of generality,
that bi+1 = b1. Since |N−(s1, D2)| ≥ 2, the vertex s1 has a negative neighbor bj 6= b1. Note that
s1 and bt are adjacent.

Subcase 2.3.1.3.2.1: Assume that bt → s1. Then we consider D − {s1, bt}.

If D has an arc bs2 such that b /∈
{

bt, b1, s1, x
2
1

}

, the cycles

s2C[b1, b]s2 and s1x
2
1C[b+, bt]s1

are complementary in D.

Otherwise {s1, bt} is a separating set of D. Since s2 → x2
1 → (D − {bt, s1, s2}), the digraph

D − {s1, bt} has at least three strong components and the first strong component has only one
vertex. We already have solved this case in Subcase 2.3.1.1.

Subcase 2.3.1.3.2.2: Assume that s1 → bt. Following the argumentation in Subcase 2.3.1.3.2.1, we
deduce that D has an arc bs2 such that b /∈

{

bt, b1, s1, x
2
1

}

. Now we consider D
′

:= D −
{

b1, x
2
1

}

.

In the following we will show that N−(b2) 6=
{

b1, x
2
1

}

. Assume to the contrary that N−(b2) =
{

b1, x
2
1

}

which implies that the initial component of D
′

is the single vertex b2. It follows that
b2 → {b3, b4, . . . , bt, s1, s2}.

If s2 has a negative neighbor b /∈ {b2, bt}, the cycles

C1 = b2C[b+, b2] and C2 = s2x
2
1C[b3, b]s2

are vertex-disjoint and contain all vertices of D except s1. If s1 can be inserted in C2, we are
done. Otherwise s1 → C2 and thus,

s1C[b3, b1]s1 and s2x
2
1b2s2

are complementary cycles of D.

Otherwise we have N−(s2, D2) = {b2, bt}. In this case we consider D
′′

:= D − {b1, b2}. If
N−(s1) = {b1, b2}, the initial component of D

′′

is the single vertex s1. It follows that s1 →
{

b3, b4, . . . , bt, s2, x
2
1

}

and thus,

s2x
2
1b2s2 and s1C[b3, b1]s1

are complementary cycles of D. Therefore we assume that there exists an index 3 ≤ m ≤ t − 1
such that bm → s1 → C[bm+1, bt]. But then

b2C[bm+1, bt]s2b1b2 and s1x
2
1C[b3, bm]s1

show that D is cycle complementary.
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All in all we have shown that N−(b2) 6=
{

b1, x
2
1

}

. If D has the arc s2b2, the cycles

s2C[b2, bt]s2 and s1x
2
1b1s1

are complementary in D. It remains to check the case that D has the arc s1b2. Since |N−(s1, D2)| ≥
2, there exists an integer 3 ≤ m ≤ t − 1 such that bm → s1 → C[bm+1, bt]. In addition, following
the argumentation in Subcase 2.3.1.3.2.1, D has an arc bs2 such that b /∈

{

bt, b1, s1, x
2
1

}

. The
vertex-disjoint cycles

C1 = s1C[b2, bm]s1 and C2 = s2x
2
1C[bm+1, bt]s2

contain all vertices of D but b1. It follows that b1 → C1, since b1 can be inserted in C1 otherwise.
But now

s2x
2
1C[b2, b]s2

and
{

s1C[bm+1, b1]C[b+, bm]s1 if b ∈ {b2, b3, . . . , bm}

s1C[b+, b1]s1 if b ∈ {bm+1, bm+2, . . . , bt−1}

are complementary cycles of D.

Subcase 2.3.2: Suppose that |V (Dp)| = 1.

Subcase 2.3.2.1: Suppose that p ≥ 3 and |V (D1)| ≥ 3. Then |N+(Dp−1, S)| ≥ 1 and, in addition,
D has two non-incident arcs leading from V (Dp−1) ∪

{

x1
1

}

to S.

Subcase 2.3.2.1.1: Assume that S → D1. Then D[S] is a tournament and hence we can assume,
without loss of generality, that D has the arc s1s2. Furthermore, there exist vertices y1 6= y2 in
D1 such that y1 → D2 and y2 → x1

1. Now it is easy to see that D is cycle complementary.

Subcase 2.3.2.1.2: Assume that s1 → D1 and N−(s2, D1) 6= ∅. Then D1 contains vertices y1 6= y2

such that y1 → D2 and y2 → x1
1. In addition, y2 can be chosen such that y2 → s2 → y+

2 .

If s2 ∈ N+(Dp−1), let C be a Hamiltonian cycle of D1. Then

s1C[y+

1 , y2]x
1
1s1 and s2C[y+

2 , y1]D2D3 . . .Dp−1s2

are complementary cycles of D.

Otherwise we deduce that N+(Dp−1) =
{

s1, x
1
1

}

. If |V (Dp−1)| ≥ 3, the digraph D has two non-

incident arcs z1s1, z2x
1
1 leading from Dp−1 to

{

s1, x
1
1

}

. Let C′ be a Hamiltonian cycle of Dp−1.
Then

s1C[y+

1 , y2]C
′

[z+

2 , z1]s1 and s2C[y+

2 , y1]D2D3 . . . Dp−2C
′

[z+

1 , z2]x
1
1s2

are complementary cycles of D. Therefore we may assume that V (Dp−1) = {z}. Note that z → s1

or z → s2.

Subcase 2.3.2.1.2.1: Suppose that p ≥ 4. It follows that x1
1 ∈ N+(Dp−2). Hence

s1C[y+

1 , y2]zs1 and s2C[y+

2 , y1]D2D3 . . . Dp−2x
1
1s2

are complementary cycles of D.

Subcase 2.3.2.1.2.2: Suppose that p = 3 and z → s2. Then

s2C[y+

2 , y1]zs2 and s1C[y+

1 , y2]x
1
1s1

are complementary cycles of D.

Subcase 2.3.2.1.2.3: Suppose that p = 3 and z → s1.

If there exists a vertex y 6= y2 in D1 such that y → x1
1, the cycles

s2C[y+

2 , y]x1
1s2 and s1C[y+, y2]zs1
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show that D is cycle complementary.

Otherwise {y2, z} is a separating set of D such that the initial strong component of D−{y2, z} is
the single vertex x1

1. Since there is no arc between x1
1 and D1−y2, the decomposition of D−{y2, z}

according to Theorem 2.6 has at least three strong components. This case was solved in Subcase 1.

Subcase 2.3.2.1.3: Assume that N−(si, D1) 6= ∅ for each i ∈ {1, 2}. We may assume, without loss
of generality, that s2 ∈ N+(Dp−1). Let C be a Hamiltonian cycle of D1.

If there exist vertices y1 6= y2 in D1 such that yi → si → y+

i for i ∈ {1, 2}, the cycles

s1C[y+
1 , y2]x

1
1s1 and s2C[y+

2 , y1]D2D3 . . .Dp−1s2

are complementary in D.

The case that there is no pair y1 6= y2 of vertices in D1 such that yi → si → y+

i for i ∈ {1, 2} can
be solved analogously to Subcase 2.1.1.

Subcase 2.3.2.2: Suppose that p ≥ 4 and |V (D1)| = 1. Then we conclude that N−(D2, S) 6= ∅
and N+(Dp−1, S) 6= ∅. Therefore we may assume that si ∈ N−(D2) for an index i ∈ {1, 2}. Note
that |V (D2)| = 1, since otherwise D2 and D − V (D2) are strong complementary subdigraphs of
D.

If si ∈ N+(Dp−1), the cycles

siD2D3 . . .Dp−1si and s3−ix
2
1x

1
1s3−i

show that D is cycle complementary.

The remaining case that N+(Dp−1) = {s3−i, x
1
1} can be solved analogously to Subcase 2.3.2.1.

Subcase 2.3.2.3: Suppose that p = 3 and |V (D1)| = 1. Then |V (D2)| ≥ 4, since |V (D)| ≥ 8.
Furthermore, we may assume, without loss of generality, that s1 → s2. But now a Hamiltonian
cycle of D2 and s1s2x

2
1x

1
1s1 are complementary cycles of D.

Subcase 2.3.2.4: Suppose that p = 2. Then |V (D1)| ≥ 5, since |V (D)| ≥ 8. In addition, at most
one vertex of S dominates D1. Note that every vertex of D has at least three negative neighbors,
since otherwise D is cycle complementary by the case |V (D1)| = 1.

Subcase 2.3.2.4.1: Suppose that there exists a vertex s ∈ S such that s → D1. Then we may
assume, without loss of generality, that s1 → D1 and N−(s2, D1) 6= ∅. It follows that D has the
arc s2s1. Furthermore, D1 contains vertices y1 6= y2 such that y1 → x1

1 and y2 → s2 → y+
2 . Since

|N−(s2)| ≥ 3, there is a vertex y 6= y2 in D1 such that y → {s2, x
1
1}. Let C be a Hamiltonian

cycle of D1. Then
s2C[y+

2 , y]s2 and s1C[y+, y2]x
1
1s1

are complementary cycles of D.

Suppose now that neither s1 nor s2 dominates D1. Note that we can solve the case that y1 cannot
be chosen unequal to y2 analogously to Subcase 2.1.1. We consider the following cases.

Subcase 2.3.2.4.2: Suppose that y1 and y2 can be chosen such that, without loss of generality,
y+

1 = y2, but not such that y+

i 6= y3−i for each i ∈ {1, 2}. Let C be a Hamiltonian cycle of D1.

Subcase 2.3.2.4.2.1: Assume that s2 → s1. Then D has the arc s2y1, since otherwise

s1y2x
1
1s1 and s2C[y+

2 , y1]s2

are complementary cycles of D. It follows that s2 → D1 − y2, a contradiction to the fact that
|N−(s2)| ≥ 3.

Subcase 2.3.2.4.2.2: Assume that s1 → s2. We consider the positive neighborhood of s1 and the
negative neighborhood of s2.
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If T := N+(s1) = {s2, y2}, the digraph D − T has at least three strong components s1, x1
1 and

D1 − y2 and thus, D is cycle complementary by one of the Subcases 2.3.2.1, 2.3.2.2 or 2.3.2.3.

If U := N−(s2) = {s1, x
1
1, y2}, the set U is a minimal separating set of D. It follows that {s2} is

the initial component of D − U and thus, s2 → D1 − U . Let y 6= y1 be a negative neighbor of s1

in D1. Then
s1C[y+

1 , z1]s1 and s2C[z+
1 , y]x1

1s1

are complementary cycles of D.

All in all we may assume that |N+(s1)| ≥ 3 and |N−(s2)| ≥ 4. It follows that D has the arc s1y
+

2 .
In addition, s2 dominates the successor of y+

2 on C and has a negative neighbor z2 /∈ {x1
1, s1, y2}.

Note that y+

2 has a positive neighbor w besides its successor on C.

If w = x1
1, the cycles

s1y
+

2 x1
1s1 and s2C[y++

2 , y2]s2

are complementary in D.

If w is on C[z+

2 , y1], the cycles

C1 = s1y
+
1 y+

2 C[w, y1]s1 and C2 = s2C[y++
2 , z2]x

1
1s2

are vertex-disjoint. Using Lemma 2.1, it follows that if D is not cycle complementary, there is a
vertex u ∈ V (C[z+

2 , w−]) such that D[{s1, x
1
1} ∪ V (C[u+, y+

2 ])] has a Hamiltonian cycle C′ and
u → C′. But then C′ and s2C[y++

2 , u]x1
1s2 show that D is cycle complementary.

If w is on C[y++

2 , z2], either y+

2 → C[y+

2 , w] or there exists a vertex u ∈ V (C[y+

2 , w]) such that
u → y+

2 → u+. The latter implies that si and u are adjacent for each i = 1, 2 and thus,
si → C[y+

2 , u] for i = 1, 2. Now we can apply the same arguments as above on u− and N+(u−)
instead of y+

2 and N+(y+
2 ). In the former case we can apply the same arguments as above on w−

and N+(w−) instead of y+

2 and N+(y+

2 ). By doing this, we obtain complementary cycles of D in
a finite number of steps.

Subcase 2.3.2.4.2.3: Assume that s1 and s2 are not adjacent. Recall that s1 has at least one
positive neighbor in D1 besides y+

1 and that neither s1 nor s2 can be inserted at another position
in C. It is easy to see that these observations lead to a contradiction to the fact that s1 and s2

are not adjacent.

Subcase 2.3.2.4.3: Suppose that y1 and y2 can be chosen such that y1 6= y2 and y+

i 6= y3−i for each
index i = 1, 2. In this case we may assume, without loss of generality, that D has the arc y2y1.
Note that if x1

1 has a negative neighbor on the path C[y+

2 , y−

1 ], with the help of Lemma 2.1 it is
easy to check that D is cycle complementary (choose y ∈ N−(x1

1) such that C[y, y−

1 ] has minimal
length).

Subcase 2.3.2.4.3.1: Assume that s1 and s2 are not adjacent.

Assume that there is an arc uy+

1 in D such that u is on C[y+

2 , y−

1 ]. Then u and s1 are adjacent.
Due to the observations above, it follows that s1 → C[u, y+

2 ]. Hence, s1 and s2 are adjacent, a
contradiction.

Considering D−y1, it is easy to see that D has an arc leading from {s2}∪V (C[y+

2 , y−

1 ]) to C[y+

1 , y2].
Let v1v2 be such an arc such that C[y+

1 , v2] has minimal length and, under this condition, C[v1, y1]
has minimal length. Let v−2 = v3. Since N−(S, C[y+

2 , y−

1 ]) = ∅ and E(D[S]) = ∅, we conclude
that v3 → C[y+

2 , v1] and v3 → s2.

Now we consider the vertex-disjoint cycles

C1 = s1C[y+

1 , v3]x
1
1s1 and C2 = s2C[y+

2 , v1]C[v2, y2]s2.

If v1 = y1 or if all vertices of the path C[v+

1 , y1] can be inserted in C1, it is immediate that D is
cycle complementary. Otherwise there exists a vertex on C[v+

1 , y1] that dominates C1. Since S
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has no negative neighbors on C[v+
1 , y−

1 ], it follows that this vertex is y1, i.e., y1 → C1. Because
|N−(v2)| ≥ 3, there exists a negative neighbor w of v2 such that w /∈ {v1, v3}. Note that w is not
on C[v+

1 , y1].

It easy to check that D is cycle complementary if w ∈ {s1, s2} ∪ V (C[y2, v
−

1 ]) ∪ V (C[y+

1 , v−3 ]).
Hence w is on C[v+

2 , y−

2 ] and thus, D contains the vertex-disjoint cycles

C′

1 = s1C[y+

1 , v3]s2C[y+

2 , y1]s1 and C′

2 = C[v2, w]v2.

Note that the vertex y2 can be inserted in C
′

1. Using Lemma 2.1, it follows that there exists a
vertex u ∈ V (C[w+, y−

2 ]) such that all vertices of the path C[u+, y2] can be inserted in C
′

1 and

u → A := V (C
′

1) ∪ V (C[u+, y2]). Therefore u+ has a negative neighbor z ∈ A. Now it is easy to
check the cycle complementarity of D.

Subcase 2.3.2.4.3.2: Assume that s2 → s1. Since S has no negative neighbor on C[y+

2 , y1], it
follows that s2 → C[y+

2 , y1].

Considering D − y1, it is easy to see that D has an arc v1v2 leading from C[y+

2 , y−

1 ] to C[y+

1 , y2].
Now we consider the vertex-disjoint cycles

C1 = C[v2, v1]v2 and C2 = s2C[v+

1 , y1]x
1
1s2.

Using Lemma 2.1, it follows that there exists a vertex v3 ∈ V (C[y+
1 , v−2 ]) ∪ {s1} that dominates

V (C1) ∪ V (C[v+

3 , v−2 ]).

If v3 = s1, let w be a negative neighbor of s2 on C[y+

1 , y−

2 ]. It follows that

s1C[w+, y2]x
1
1s1 and s2C[y+

2 , w]s2

are complementary cycles of D.

If v3 6= s1, the vertices s2 and v3 are adjacent. If D has the arc v3s2, the cycle

C
′

= s2C[v+

1 , y1]s1C[y+

1 , v3]x
1
1s2

and a Hamiltonian cycle of D[V (C1) ∪ V (C[v+
3 , v−2 ])] are complementary cycles of D. Therefore

we assume now that D has the arc s2v3. Recall that s2 has at least three negative neighbors
and thus, a negative neighbor z2 6= y2. We now consider the possibilities z2 ∈ V (C[v2, y

−

2 ]),
z2 ∈ V (C[v+

3 , v−2 ]) and z2 ∈ V (C[y+
1 , v−3 ]). In the first two cases we choose z2 ∈ N−(s2) such that

C[z2, y2] has maximal length.

Subcase 2.3.2.4.3.2.1: Suppose that z2 ∈ V (C[v2, y
−

2 ]). In this case we consider the vertex-disjoint
cycles

C1 = s1C[y+

1 , v3]C[z+

2 , y2]y1x
1
1s1 and C2 = s2C[y+

2 , v1]C[v2, z2]s2.

Since N−(S, C[y+
2 , y−

1 ]) = ∅, the vertices of the path C[v+
1 , y−

1 ] can be inserted in C1. If the vertices
of C[v+

3 , z−2 ] cannot be inserted in C2, there exists a vertex u on C[v+

3 , z−2 ] such that u → C[u+, v1]
and u → s2 by Lemma 2.1. In addition, V (C2)∪ V (C[u+, v−2 ]) induces a Hamiltonian subdigraph
of D. But then

C′

1 = s1C[y+

1 , u]x1
1s1 and C′

2 = s2C[y+

2 , v1]C[v2, y2]s2

are vertex-disjoint cycles of D such that the vertices of C[v+

1 , y1] can be inserted in C′

1 and the
vertices of C[u+, v−2 ] can be inserted in C′

2. It follows that D is cycle complementary.

Subcase 2.3.2.4.3.2.2: Suppose that z2 ∈ V (C[v+

3 , v−2 ]). We consider the vertex-disjoint cycles

C1 = s1C[y+

1 , z2]x
1
1s2C[v+

1 , y1]s1 and C2 = v1C[v2, v1].

Using Lemma 2.1, the vertices on C[z+

2 , v−2 ] can be inserted in C2.

Subcase 2.3.2.4.3.2.3: Suppose that z2 ∈ V (C[y+

1 , v−3 ]). In this case we choose z2 such that
z2 → s2 → C[z+

2 , v3]. Then we consider the vertex-disjoint cycles

C1 = s1C[y+

1 , z2]x
1
1s1 and C2 = s2C[y+

2 , v1]C[v2, y2]s2.
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Note that all vertices of the path C[z+
2 , v−2 ] can be inserted in C2 by using Lemma 2.1.

Since s1 has no negative neighbor on C[v+

1 , y1], it follows that y1 → C[y+

1 , z2]. Because
∣

∣N−(z+

2 )
∣

∣ ≥

3, the vertex z+

2 has a negative neighbor v4 /∈ {s2, z2}. It is easy to check that D is cycle
complementary if v4 ∈ {s1} ∪ V (C[y2, z2]). Therefore we may assume that v4 ∈ V (C[z+

2 , y−

2 ]).
But then

C′

1 = s2C[v+

1 , y1]s1C[y+

1 , z2]s2 and C′

2 = v4C[z+

2 , v3]C[v+

4 , v1]C[v2, v4]

are vertex-disjoint cycles in D such that the remaining vertices on C[v+

3 , v−2 ] can be inserted in
C2. Hence, D is cycle complementary.

Subcase 2.3.2.4.3.3: Assume that s1 → s2. It follows that s1 and y2 are adjacent.

If y2 → s1, the cycles
s1C[y+

1 , y2]s1 and s2C[y+

2 , y1]x
1
1s2

are complementary in D.

If s1 → C[y+
1 , y2], the vertex s1 has a negative neighbor on the path C[y+

2 , y−

1 ] and thus, D is
cycle complementary.

Therefore we may assume that there exists a vertex z1 ∈ V (C[y+
1 , y−

2 ]) such that z1 → s1 →
C[z+

1 , y2]. We choose z1 such that C[z1, y2] has minimal length. Note that z1 and y2 are adjacent.

Subcase 2.3.2.4.3.3.1: If z+

1 6= y2 and y2 → z1, the vertex s1 has a negative neighbor on the path
C[y+

2 , z−1 ] and thus, D is cycle complementary.

Subcase 2.3.2.4.3.3.2: If z+

1 6= y2 and z1 → y2, we are in Subcase 2.3.2.4.3.2 which we have already
solved.

Subcase 2.3.2.4.3.3.3: Assume that z+

1 = y2. Note that y+

1 has a negative neighbor w besides s1

and y1.

If w /∈ V (C[y+

1 , z1]), it is easy to check that D has complementary cycles.

If w ∈ V (C[y+

1 , z1]), the vertex-disjoint cycles

C1 = s1y2s2C[y+
2 , y1]x

1
1s1 and C2 = C[y+

1 , w]y+
1

contain all vertices of D except V (C[w+, z1]). Note that if z1 → C1, the digraph D is cycle
complementary. By Lemma 2.1 there exists a vertex u on C[w+, z−1 ] such that the vertices of
C[u+, z1] can be inserted in C2 (resulting in an extended cycle C′

2) and u → C′

2. It follows
particularly that the vertex u+ has a negative neighbor on C′

2. Now it is easy to check that D is
cycle complementary.

For the opposite direction it is immediate that a 2-connected, 2-regular in-tournament with 2m+1
(m ≥ 4) vertices is not cycle complementary. �
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