All 2-connected in-tournaments that are cycle complementary

Dirk Meierling and Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany e-mail: meierling@math2.rwth-aachen.de

Abstract

An in-tournament is an oriented graph such that the negative neighborhood of every vertex induces a tournament. A digraph D is cycle complementary if there exist two vertex-disjoint directed cycles spanning the vertex set of D. Let D be a 2-connected in-tournament of order at least 8. In this paper we show that D is not cycle complementary if and only if it is 2-regular and has odd order.

Keywords: In-tournaments; complementary cycles.

1 Introduction

In 1990, Bang-Jensen [1] defined *local tournaments* to be the family of oriented graphs, i.e. digraphs without loops, multiple arcs and cycles of length 2, where the positive as well as the negative neighborhood of every vertex induces a tournament. In transfering the general adjacency only to vertices that have a common negative or a common positive neighbor, local tournaments form an interesting generalization of tournaments. Since then a lot of research has been done concerning local tournaments, or the more general class of *locally semicomplete digraphs*, where there might be cycles of length 2. In particular, the Ph.D. theses of Guo [11] and Huang [14] handeled this subject in detail. For more information concerning different generalizations of tournaments, the reader may be refered to the survey article of Bang-Jensen and Gutin [4]. In claiming adjacency only for vertices that have a common positive neighbor, local tournaments can be further generalized to the class of in-tournaments. An oriented graph D is called *in-tournament* if the set of negative neighbors of each vertex of D induces a tournament. Some problems concerning in-tournaments have been studied by Bang-Jensen, Huang and Prisner [6]. For information about the cycle structure of in-tournaments see, for example, Peters and Volkmann [16], Tewes [19], [20] or Tewes and Volkmann [21], [22].

Throughout this paper, *cycles* and *paths* are directed cycles and directed paths. Two subdigraphs of a digraph D are called *complementary* if they are disjoint and span the vertex set of D. A digraph is called *cycle complementary* if it has two complementary cycles. The general problem of partitioning a highly connected tournament into two subtournaments of high connectivity was mentioned by Thomassen (see Reid [17]). The first step towards the solution of this problem was made by Reid [17] in 1985 by the following result.

Theorem 1.1 (Reid [17] 1985). Let T be a 2-connected tournament on $n \ge 6$ vertices. Then T contains two vertex-disjoint cycles of lengths 3 and n-3 unless T is isomorphic to T_7^1 , where T_7^1 is the 3-regular tournament presented in Fig. 1.

This result is stronger in the way that one of the strongly connected subtournaments can be specified to be a 3-cycle. For extensions, supplements and generalizations of Theorem 1.1 see, for example, Song [18], Guo and Volkmann [13], Bang-Jensen, Guo and Yeo [3], Chen, Gould and Li [9] and Gould and Guo [10].

An obvious necessary condition for a digraph D of order n to contain two complementary cycles is that the girth of D is at most n/2. In [2], Bang-Jensen observed that the second power C_{2k+1}^2 of an

Fig. 1: Three 2-connected local tournaments that are not cycle complementary.

odd cycle has girth k + 1 and that the 2-regular digraph C_{2k+1}^2 is a 2-connected local tournament. This shows that Theorem 1.1 cannot be extended to local tournaments in general. Confirming two conjectures by Bang-Jensen [2], Guo and Volkmann [12] proved that the second power of odd cycles are the only exceptions when $n \ge 8$.

Theorem 1.2 (Guo & Volkmann [12] 1994). Let D be a 2-connected local tournament on $n \ge 6$ vertices. Then D has two complementary cycles if and only if D is not the second power of an odd cycle and D is not a member of $\{T_7^1, T_7^2, T_6\}$, where T_7^1, T_7^2 and T_6 are presented in Fig. 1.

In this paper we will show that Theorem 1.2 remains valid for the superclass of in-tournaments. The proof is much more difficult than the one of Theorem 1.2, since the structural properties of in-tournaments are not as strong as these of local tournaments.

2 Terminology and preliminary results

We assume that the reader is familiar with the basic concepts of graph theory and we refer to the comprehensive books by Bondy and Murty [7] or by Bang-Jensen and Gutin [5] for information which are not given here.

All digraphs mentioned in this paper are finite without loops and multiple arcs. For a digraph D we denote by V(D) and E(D) the vertex set and arc set of D, respectively. The subdigraph induced by a subset A of V(D) is denoted by D[A]. A cycle with the vertices x_1, x_2, \ldots, x_k and the arcs $x_1x_2, x_2x_3, \ldots, x_kx_1$ is called a k-cycle and is denoted by $x_1x_2 \ldots x_kx_1$. If we consider a k-cycle $C = x_1x_2 \ldots x_kx_1$ in a digraph D, all subscripts appearing in related calculations are taken modulo the cycle length k (note that $x_0 = x_k$). Let $C[x_i, x_j]$, where $1 \le i, j \le k$, denote the subpath $x_ix_{i+1} \ldots x_j$ of C with initial vertex x_i and terminal vertex x_j . If x is a vertex of C, the successor (predecessor) of x on C is denoted by $x_C^+(x_C^-)$, and if no confusion arises, x^+ and x^- will be used instead of x_C^+ and x_C^- , respectively. The notations for paths are defined analogously.

If $xy \in E(D)$, we say that x dominates y. If A and B are two disjoint subdigraphs of a digraph D such that every vertex of A dominates every vertex of B, we say that A dominates B, denoted by $A \to B$. Furthermore, $A \rightsquigarrow B$ denotes the fact that there is no arc leading from B to A and at least one arc leading from A to B. In this case we also say that A weakly dominates B. The outset (inset) $N^+(x)$ ($N^-(x)$) of a vertex x is the set of positive (negative) neighbors of x. More generally, for arbitrary subdigraphs A and B of D, the outset $N^+(A, B)$ is the set of vertices in B to which there is an arc from a vertex in A, and the inset $N^-(A, B)$ is defined analogously. The numbers $|N^+(x)|$ and $|N^-(x)|$ are called outdegree and indegree of x, respectively. We say that a digraph D is k-regular if $|N^+(x)| = |N^-(x)| = k$ for every vertex x of D.

If D is a strong digraph and S is a subset of V(D) such that D - S is not strong, we say that S is a separating set. A separating set S is called *minimal separating set* (*minimum separating set*) if there exists no separating set U such that $U \subseteq S$ and $U \neq S$ (|U| < |S|).

The first result is a simple, but powerful observation on the interaction of a cycle and an external vertex.

Lemma 2.1. Let D be an in-tournament containing a cycle $C = u_1 u_2 \dots u_t u_1$.

- (a) If there exists a vertex $x \in V(D) V(C)$ such that $d^+(x, C) > 0$, either $x \to C$ or $u_i \to x \to u_{i+1}$ for some $1 \le i \le t$.
- (b) If $P = v_1 v_2 \dots v_s$ is a path in D V(C) such that $d^+(v_s, C) > 0$, either there exists an integer $1 \le i \le s$ such that $v_i \to C$, $v_i \to P[v_{i+1}, v_s]$ and D has a cycle that consists of all vertices of C and $P[v_{i+1}, v_s]$ or D contains a Hamiltonian cycle of $D[V(C) \cup V(P)]$.

Proof. (a) Without loss of generality, let $x \to u_t$. Assume that x does not dominate C. Obviously, x and u_{t-1} are negative neighbors of the vertex u_t and hence, since D is an in-tournament, they are adjacent. If $u_{t-1} \to x$, we choose i = t - 1 and are done. Otherwise $x \to u_{t-1}$ which implies the adjacency of the vertices u_{t-2} and x. Since x does not dominate C, we obtain i in at most t-1 steps.

(b) Using the first part of this lemma, we conclude that either $v_s \to C$ or there exists an integer $1 \leq j \leq t$ such that $u_j \to v_s \to u_{j+1}$. If $v_s \to C$, we choose i = s and are done. Otherwise note that we can extend the cycle C by the vertex v_s to a cycle C' and that $d^+(v_{s-1}, C') > 0$. Using these observations we obtain i in at most s steps.

Camion [8] proved in 1959 that a tournament is Hamiltonian if and only if it is strong. In 1993, Bang-Jensen, Huang and Prisner [6] extended this result to in-tournaments.

Theorem 2.2 (Bang-Jensen, Huang & Prisner [6] 1993). An in-tournament is Hamiltonian if and only if it is strong.

The previous results are useful for the analyzation of the structural properties of in-tournaments.

Theorem 2.3 (Bang-Jensen, Huang & Prisner [6] 1993). Let D be a strong in-tournament and let S be a minimal separating set of D.

- (a) If A and B are two distinct strong components of D S, either there is no arc between them or A weakly dominates B or B weakly dominates A. Furthermore, if A weakly dominates B, the set $N^{-}(B, A)$ dominates B.
- (b) If A and B are two distinct strong components of D-S such that A weakly dominates B, the set $N^{-}(b, A)$ induces a tournament for each $b \in B$.
- (c) The strong components of D-S can be ordered in a unique way D_1, D_2, \ldots, D_p such that there are no arcs from D_j to D_i for j > i, and D_i has an arc to D_{i+1} for $i = 1, 2, \ldots, p-1$.

According to Theorem 2.3, we give the following definition.

Definition 2.4. The unique labelling D_1, D_2, \ldots, D_p of the strong components of D - S as described in Theorem 2.3 is called the strong decomposition of D - S. We call D_1 the initial and D_p the terminal component.

The following results are immediate by Theorem 2.3.

Corollary 2.5 (Bang-Jensen, Huang & Prisner [6] 1993). Let D be a strong in-tournament and let S be a minimal separating set of D. The strong decomposition of D - S has the following properties.

- (a) If $x_i \to x_k$ for $x_i \in V(D_i)$ and $x_k \in V(D_k)$ with $1 \le i \ne k \le p$, then $x_i \to D_j$ for every $i+1 \le j \le k$.
- (b) The digraph D S has a Hamiltonian path.
- (c) For every $s \in S$ we have $d^+(s, D_1) > 0$ and $d^-(s, D_p) > 0$.

From the fact that every connected non-strong in-tournament has a unique strong decomposition, we can find a further useful decomposition. This result plays an important role in our proof.

Theorem 2.6 (Structure Theorem). Let D be a strong in-tournament and let S be a minimal separating set of D. There is a unique order D'_1, D'_2, \ldots, D'_r with $r \ge 2$ of the strong components of D - S such that

- (a) D'_1 is the terminal component of D S and D'_i consists of some strong components of D for $i \ge 2$;
- (b) there exists a vertex x in the initial component of D'_{i+1} and a vertex y in the terminal component of D'_{i+1} such that $\{x, y\}$ dominates the initial component of D'_i for i = 1, 2, ..., r-1;
- (c) there are no arcs between D'_i and D'_j for i, j satisfying $|i j| \ge 2$;
- (d) if $r \ge 3$, there exist no arcs from D'_i to S for $i \ge 3$, $S \to D_1$ and S induces a tournament in D.

Proof. Let D_1, D_2, \ldots, D_p be the strong decomposition of D - S. We define (see Fig. 2)

$$D'_{1} = D_{p}, \quad \lambda_{1} = p,$$
$$\Lambda_{i+1} = \min\left\{j \mid N^{+}(D_{j}, D'_{i}) \neq \emptyset\right\}$$

and

$$D'_{i+1} = D \left[V(D_{\lambda_{i+1}}) \cup V(D_{\lambda_{i+1}+1}) \cup \ldots \cup V(D_{\lambda_{i-1}}) \right].$$

So we have a new decomposition D'_1, D'_2, \ldots, D'_r , where $2 \le r \le p$, of D that satisfies (a).

By the definition of D'_{i+1} , there exists a strong component D_l of D'_i such that $N^+(D_{\lambda_{i+1}}, D_l) \neq \emptyset$. Therefore we conclude from Corollary 2.5 (a) that there exists a vertex $x \in V(D_{\lambda_{i+1}})$ such that $x \to D_j$ for each $j \in \{\lambda_{i+1}, \ldots, l\}$. From Theorem 2.3 (c) and Corollary 2.5, it follows that there exists a vertex $y \in V(D_{\lambda_{i-1}})$ such that $y \to D_{\lambda_i}$. So (b) has been proved.

Note that if r = 2, there is nothing to prove in (c). If $r \ge 3$ and i, j are two integers with $i \ge j+2$, there is no arc from D'_i to D'_j by the definition of λ_{i-1} . In addition, D contains no arc from D'_j to D'_j by Theorem 2.3 (c).

Assume to the contrary that there is an arc xs from $x \in V(D'_i)$ to $s \in S$, where $i \ge 3$. Note that Corollary 2.5 (c) states that s has a negative neighbor x' in D_p . Since D is an in-tournament, it follows that x and x' are adjacent, a contradiction to (c).

Now we shall prove that $S \to D_1$. Note that we have $d^+(s, D_1) > 0$ for every vertex $s \in S$ by Corollary 2.5 (b). Now let $s \in S$ be an arbitrary vertex. If D_1 consists of a single vertex, there is nothing to prove. Otherwise D_1 has a Hamiltonian cycle by Theorem 2.2. Using Lemma 2.1 (a), we deduce that either $s \to D_1$ or that s has a negative neighbor in D_1 . Thus, if $s \not\to D_1$, the vertex s has negative neighbors both in D_1 and D_p , a contradiction to (c). This completes the proof of this theorem.

Fig. 2: The decomposition of a strong in-tournament,

3 Main Results

In this paper we shall give the following complete characterization of 2-connected in-tournaments which are cycle complementary.

Theorem 3.1 (Main Theorem). Let D be a 2-connected in-tournament on $n \ge 6$ vertices that is not a member of $\{T_7^1, T_7^2, T_6\}$ as presented in Fig. 1. Then D is not cycle complementary if and only if D is 2-regular and |V(D)| is odd.

Proof of Main Theorem

We shall prove Theorem 3.1 for $n \ge 8$. For n = 6 and n = 7 it is straightforward to verify the desired result by means of a case by case analysis.

Suppose that D is k-connected, but not (k + 1)-connected $(k \ge 2)$. Then D has a separating set S of size k. According to Corollary 2.5 (b) and Theorem 2.6, the digraph D - S is connected and we have a new order D'_1, D'_2, \ldots, D'_r , where $2 \le r \le p$, of the strong components D_1, D_2, \ldots, D_p of D - S such that there are only arcs from D'_{i+1} to D'_i for $i = 1, 2, \ldots, r - 1$.

Note that the k-connectivity of D implies that each subdigraph D'_i , where $2 \le i \le r-1$, contains at least k vertices. Furthermore, we may assume, without loss of generality, that every vertex of $S - s_1$ has at least two positive neighbors in D - S.

Claim. If $\sum_{j=1}^{\lambda_2-1} |V(D_j)| \ge 2$, we have $|V(D_i)| = 1$ for each $i \le \lambda_2$.

Proof. Assume that $|V(D_i)| \ge 3$ for an index $i \le \lambda_2$. Let

$$A := \bigcup_{j=1}^{\lambda_2 - 1} V(D_j).$$

Since D is 2-connected, we have $|N^{-}(D_i, A)| \geq 2$ which implies that D contains two distinct vertices $v_1, v_2 \in A$ that dominate D_i . By a well-known result due to Menger [15] and Whitney

[23], we obtain two vertex-disjoint paths leading from D_i to $\{v_1, v_2\}$ and therefore, by adding the appropriate arcs from $\{v_1, v_2\}$ to D_i , two vertex-disjoint cycles C_1, C_2 in D. We choose C_1 and C_2 such that $|V(C_1) \cup V(C_2)|$ is maximal. We will now show that $V(C_1) \cup V(C_2) = V(D)$ which is a contradiction to our assumption that D is not cycle complementary.

Let $u \notin V(C_1) \cup V(C_2)$ be an arbitrary vertex that has a positive neighbor in $V(C_1) \cup V(C_2)$, say $N^+(u, C_1) \neq \emptyset$. By Lemma 2.1 and the maximality of the cycles, it follows that $u \to C_1$. Note that each of the two cycles contains at least one vertex of A, one vertex of D_i and one vertex of S. This implies that u has positive neighbors both in D_i and S. With the help of Theorem 2.6 we conclude that $u \in S$.

By the observations above we conclude that $V(D) - S \subseteq V(C_1) \cup V(C_2)$. Note that each vertex $s \in S$ dominates D_1 by Theorem 2.6. It follows that each vertex $s \in S$ has a positive neighbor on C_1 or C_2 . In addition, if $s \in S - (V(C_1) \cup V(C_2))$ has a positive neighbor on C_j , where $j \in \{1, 2\}$, the vertex s dominates C_j and thus, $N^+(s, D_i) \neq \emptyset$. It follows that $s \to A$ by Theorem 2.6. The latter implies that s has positive neighbors on both cycles. Since C_1 and C_2 were chosen maximal, we conclude that $s \to C_1$ and $s \to C_2$ and thus, $s \to D - S$, a contradiction to Corollary 2.5. This completes the proof of this claim.

Suppose that D is not cycle complementary. We shall show below that then D is 2-regular and |V(D)| is odd. We consider two cases, depending on the value of r.

Case 1: Let $r \geq 3$. By Theorem 2.6, there exist no arcs from D'_i to S for $i \geq 3$, $S \to D_1$ and S induces a tournament. In addition, if $k \geq 4$, the tournament D[S] is transitive, since otherwise an arbitrary 3-cycle C_3 of D[S] and a Hamiltonian cycle of $D - C_3$ are complementary cycles of D. Let $s_1 s_2 \ldots s_k$ be a Hamiltonian path of D[S]. Note that s_k has at least two positive neighbors outside of S. By the claim above we have $|V(D_i)| = 1$ for each $i \leq \lambda_2$.

Note that for $3 \leq j \leq r$ there exists an unique Hamiltonian path $x_1^j x_2^j \dots x_{n_j}^j$ of D'_j such that $x_1^j \to x_l^j$ for each l > 1. In addition, if $x_1^j x_2^j \dots x_{n_j}^j$ is a Hamiltonian path of D'_j and $x_1^{j-1} x_2^{j-1} \dots x_{n_{j-1}}^{j-1}$ is a Hamiltonian path of D'_{j-1} , where $j \geq 2$, the vertex x_1^j dominates $D_{\lambda_{j-1}}$ and $x_{n_j}^j$ dominates x_2^{j-1} .

Subcase 1.1: Suppose that $|V(D_p)| \ge 3$. Let C be a Hamiltonian cycle of D_p and let $z_1, z_2 \in V(D_p)$ be two vertices such that $z_1 \to s_1$ and $z_2 \to s_k$. Then

$$s_{k-1}x_1^r x_1^{r-1} \dots x_1^2 C[z_2^+, z_1] s_1 s_2 \dots s_{k-1}$$

$$s_k x_2^r x_3^r \dots x_{n_r}^r x_2^{r-1} x_3^{r-1} \dots x_{n_{r-1}}^{r-1} \dots x_2^2 x_3^2 \dots x_{n_2}^2 C[z_1^+, z_2] s_k$$

are complementary cycles in D.

Subcase 1.2: Suppose that $|V(D_p)| = 1$. Note that in this case $N^+(D_{p-1}, S) \neq \emptyset$. Let $v \in V(D_{p-1})$ be a vertex that has a positive neighbor in S. Then either $v \to s_i$ for an index $i \neq k$ or $s_{k-1} \to v \to s_k$. In the latter case s_{k-1} has a negative neighbor $u \neq v$ in D'_2 .

Subcase 1.2.1: Suppose that $|V(D'_r)| \ge 2$. Then $s_k \to x_2^r$ and $s_{k-1} \to x_1^r$.

Subcase 1.2.1.1: Suppose that $|V(D'_{j})| \ge 3$ for an index $2 \le j \le r$. If $x_{n_2}^2 \to s_i$, where $i \ne k$, the cycles

$$C_1 = s_{k-1} x_1^r x_1^{r-1} \dots x_1^j x_{n_j}^j x_2^{j-1} x_3^{j-1} \dots x_{n_{j-1}}^{j-1} \dots x_2^2 x_3^2 \dots x_{n_2}^2 s_i s_{i+1} \dots s_{k-1}$$

and

and

$$C_2 = s_k x_2^r x_3^r \dots x_{n_r}^r \dots x_2^{j+1} x_3^{j+1} \dots x_{n_{j+1}}^{j+1} x_2^j x_3^j \dots x_{n_j-1}^j x_1^{j-1} x_1^{j-2} \dots x_1^1 s_k$$

are vertex-disjoint. If i = 1, the cycles C_1 and C_2 are complementary in D. If $i \ge 2$ and D[S] is transitive, the path $s_1s_2\ldots s_{i-1}$ can be inserted in C_2 . Otherwise we have k = 3, i = 2 and D[S]

induces the 3-cycle $s_1s_2s_3s_1$ in D. If $s_1 \neq C_1$, the vertex s_1 can be inserted in C_1 . Otherwise $s_1 \rightarrow C_1$ and it follows that $s_1 \rightarrow x_2^r$. But then

$$s_2 s_3 x_1^r x_1^{r-1} \dots x_1^j x_{n_j}^j x_2^{j-1} x_3^{j-1} \dots x_{n_{j-1}}^{j-1} \dots x_2^2 x_3^2 \dots x_{n_2}^2 s_2$$

and

$$s_1 x_2^r x_3^r \dots x_{n_r}^r \dots x_2^{j+1} x_3^{j+1} \dots x_{n_{j+1}}^{j+1} x_2^j x_3^j \dots x_{n_j-1}^j x_1^{j-1} x_1^{j-2} \dots x_1^1 s_1$$

are complementary cycles of D.

If there exists no arc $x_{n_2}^2 s_i$ in D such that $i \neq k$, we obtain $s_{k-1} \to x_{n_2}^2 \to s_k$. In this case

$$s_{k-1}x_1^r x_1^{r-1} \dots x_1^1 s_1 s_2 \dots s_{k-1}$$
 and $s_k x_2^r x_3^r \dots x_{n_r}^r \dots x_2^2 x_3^2 \dots x_{n_2}^2 s_k$

show that D is cycle complementary.

Subcase 1.2.1.2: Suppose that D'_j is a 1-path for each $2 \le j \le r$. Note that we have k = 2 in this case. If D is not 2-regular, at least one of the following possibilities holds. The digraph D has an arc

- (i) $s_1 z$, where $z \in V(D) \{s_2, x_1^r, x_2^2, x_1^1\}$ or
- (ii) $s_2 z$, where $z \in V(D) \{x_1^r, x_2^r, x_1^1, s_1\}$ or
- (iii) $x_1^j x_2^{j-1}$, where $j \in \{3, 4, \dots, r\}$ or
- (iv) $x_1^2 s$, where $s \in S$ or
- (v) $x_2^2 s_2$.

But each such arc yields a contradiction to the fact that D is not cycle complementary which means that D is 2-regular.

Subcase 1.2.2: Suppose that $|V(D'_r)| = 1$.

Subcase 1.2.2.1: Suppose that $r \geq 4$. Then $s_k \to \{x_1^r, x_1^{r-1}\}$ and $s_{k-1} \to x_1^r$.

Subcase 1.2.2.1.1: Suppose that $|V(D'_j)| \ge 3$ for an index $2 \le j \le r-1$. If $x_{n_2}^2 \to s_i$, where $i \ne k$, the cycles

$$C_1 = s_{k-1}x_1^r x_2^{r-1} x_3^{r-1} \dots x_{n_{r-1}}^{r-1} \dots x_2^2 x_3^2 \dots x_{n_2}^2 s_i s_{i+1} \dots s_{k-1} \text{ and } C_2 = s_k x_1^{r-1} x_1^{r-2} \dots x_1^1 s_k$$

are vertex-disjoint. If i = 1, the cycles C_1 and C_2 are complementary in D. If $i \ge 2$ and D[S] is transitive, the path $s_1s_2\ldots s_{i-1}$ can be inserted in C_2 . Otherwise we have k = 3, i = 2 and D[S]induces the 3-cycle $s_1s_2s_3s_1$ in D. If $s_1 \ne C_1$, the vertex s_1 can be inserted in C_1 . Otherwise $s_1 \rightarrow C_1$ and it follows that $s_1 \rightarrow x_1^{r-1}$. But then

$$s_2 x_1^r x_2^{r-1} x_3^{r-1} \dots x_{n_{r-1}}^{r-1} \dots x_2^2 x_3^2 \dots x_{n_2}^2 s_2$$
 and $s_3 s_1 x_1^{r-1} x_1^{r-2} \dots x_1^1 s_3$

are complementary cycles of D.

If there exists no arc $x_{n_2}^2 s_i$ in D such that $i \neq k$, then we obtain $s_{k-1} \to x_{n_2}^2 \to s_k$. In this case

$$s_{k-1}x_1^r x_2^{r-1} x_3^{r-1} \dots x_{n_{r-1}}^{r-1} \dots x_2^{j+1} x_3^{j+1} \dots x_{n_{j+1}}^{j+1} x_2^j x_3^j \dots x_{n_j-1}^j x_1^{j-1} \dots x_1^j s_1 s_2 \dots s_{k-1}$$

and

 $s_k x_1^{r-1} x_1^{r-2} \dots x_1^j x_{n_j}^j x_2^{j-1} x_3^{j-1} \dots x_{n_{j-1}}^{j-1} \dots x_2^2 x_3^2 \dots x_{n_2}^2 s_k$

show that D is cycle complementary.

Subcase 1.2.2.1.2: Suppose that D'_j is a 1-path for each $2 \le j \le r-1$. Note that we have k=2 in this case. We consider the vertex x_2^2 .

If $x_2^2 \to s_1$, the cycles

$$s_1 x_1^r x_2^{r-1} x_2^{r-2} \dots x_2^2 s_1$$
 and $s_2 x_1^{r-1} x_1^{r-2} \dots x_1^1 s_1$

are complementary in D.

Otherwise $s_1 \to x_2^2 \to s_2$. By Theorem 2.6 it follows that $s_1 \to D - \{x_1^1, x_2^2\}$. Therefore

$$s_1 x_1^{r-1} x_1^{r-2} \dots x_1^1 s_1$$
 and $s_2 x_1^r x_2^{r-1} x_2^{r-2} \dots x_2^2 s_2$

show that D is cycle complementary.

Subcase 1.2.2.2: Suppose that r = 3. Note that D_2 has at least k - 1 negative neighbors in S and D_{p-1} has at least k - 1 positive neighbors in S.

Subcase 1.2.2.2.1: Suppose that $p \ge 4$.

If there exists a vertex $s \in S$ such that $s \in N^+(D_{p-1}) \cap N^-(D_2)$, it is easy to see that there exists a subset A of D_2 (where $A \neq V(D_2)$ if $|V(D_2)| \geq 3$) and a subset B of D_{p-1} (where $B \neq V(D_{p-1})$ if $|V(D_{p-1})| \geq 3$) such that the digraphs

$$H := D[\{s\} \cup A \cup B] \text{ and } D - V(H)$$

are both strong.

If $N^+(D_{p-1}) \cap N^-(D_2) = \emptyset$, we conclude that k = 2. We may assume, without loss of generality, that $s_1 \to s_2$ and $N^+(s_1, D_2) = N^-(s_2, D_{p-1}) = \emptyset$.

If $s_2 \to D_2$, there exists a subset X of D_2 (where $X \neq V(D_2)$ if $|V(D_2)| \geq 3$) such that

$$H := D[\{s_2, x_1^1\} \cup X] \text{ and } D - V(H)$$

are both strong.

If $s_2 \neq D_2$, there exists a subset A of D_2 (where $A \neq V(D_2)$ if $|V(D_2)| \geq 3$) and a subset B of D_{p-1} (where $B \neq V(D_{p-1})$ if $|V(D_{p-1})| \geq 3$) such that the digraphs

$$H := D[\{s_1, x_1^3\} \cup A \cup B] \text{ and } D - V(H)$$

are both strong.

Subcase 1.2.2.2.2: Suppose that p = 3.

If $|V(D_2)| \ge 4$, we consider the positive and the negative neighborhood of D_2 . The assumption that there exists a vertex $s \in S$ such that $N^+(D_2, S) = S - s = N^-(D_2, S)$ leads to a contradiction, since D is a k-connected in-tournament with $k \ge 2$. Thus, S contains distinct vertices $s_1 \ne s_2$ such that $S - s_2 \subseteq N^+(D_2)$, $S - s_1 \subseteq N^-(D_2)$ and $s_1 \rightarrow s_2$. Let C be a Hamiltonian cycle of D_2 . If $s_2 \rightarrow D_2$, note that there are two distinct vertices $z_1 \ne z_2$ in D_2 such that $z_1 \rightarrow s_1$ and $z_2 \rightarrow x_1^1$. But then

$$s_2 C[z_1^+, z_2] x_1^1 s_2$$
 and $s_1 x_1^3 C[z_2^+, z_1] s_1$

are complementary cycles of D.

If $s_2 \not\rightarrow D_2$, there exists a vertex $z_2 \in V(D_2)$ such that $z_2 \rightarrow s_2 \rightarrow z_2^+$. Thus s_1 and z_2 are adjacent.

If $z_2 \to s_1$, note that there exists a vertex $z_1 \neq z_2$ in D_2 such that $z_1 \to x_1^1$. Now

$$s_2 C[z_2^+, z_1] x_1^1$$
 and $s_1 x_1^3 C[z_1^+, z_2]$

are complementary cycles of D.

If $s_1 \to z_2$, there exists a vertex z_1 in D_2 such that $z_1 \to s_1 \to z_1^+$.

If $z_1^+ \neq z_2$, we consider the vertex set $A := V(C[z_1^+, z_2^-])$. Since D is strong, we have $N^+(A) - A \neq \emptyset$. If $A \ni a \to s_2$, the cycles

$$s_2 x_1^3 C[z_1^+, a] s_2$$
 and $s_1 C[a^+, z_1] x_1^1 s_1$

are complementary in D. If $A \ni a \to z_1^1$, the cycles

$$s_2 x_1^3 C[z_1^+, a] x_1^1 s_2$$
 and $s_1 C[a^+, z_1] s_1$

show that D is cycle complementary. Finally, if $A \ni a \to b \in V(D_2) - A$, the cycles

$$C_1 = s_1 C[z_1^+, a] C[b, z_1] x_1^1 s_1$$
 and $C_2 = s_2 x_1^3 C[a^+, z_2] s_2$

are vertex-disjoint. By Lemma 2.1 each vertex v of $C[z_2^+, b^-]$ can either be inserted in C_1 or dominates C_1 . Obviously D is cycle complementary in the first case. In the latter case let v be a vertex of $C[z_2^+, b^-]$ such that $v \to V(C_1) \cup V(C[v^+, b^-])$ and $|V(C[v^+, b^-])|$ is minimal. But then the sets

$$\{s_2, x_1^3, x_1^1\} \cup V(C[a^+, v]) \text{ and } \{s_1\} \cup V(C[v^+, a])$$

both induce strong in-tournaments in D. Theorem 2.2 implies that D is cycle complementary.

If $z_1^+ = z_2$, we shall show in the first step that $N^-(s_1) = \{z_1, x_1^1\}$ and $N^+(s_1) = \{s_2, x_1^3, z_1^+\}$. If $v \neq z_1$ is a negative neighbor of s_1 in D_2 , the cycles

$$s_1 C[z_1^+, v] s_1$$
 and $s_2 x_1^3 C[v^+, z_1] x_1^1$

are complementary in D. We may assume now that $N^{-}(s_1, D_2) = \{z_1\}$. If $w \neq z_1^+$ is a positive neighbor of s_1 in D_2 , our assumption implies that $s_1 \to z_2^+$ and thus,

 $s_1 C[z_2^+, z_1] s_1$ and $s_2 x_1^3 z_2 x_1^1 s_2$

are complementary cycles of D. Now note that $N^+(s_1) = \{s_2, x_1^3, z_1^+\}$ is a minimal separating set of D. Let A_1, A_2, \ldots, A_q be the strong decomposition and A'_1, A'_2, \ldots, A'_t be the decomposition according to Theorem 2.6 of $D - \{s_2, x_1^3, z_1^+\}$. Then $V(A_q) = \{s_1\}$, $V(A_{q-1}) = \{x_1^1\}$ and $q \ge 4$. If $z_1 \notin V(A_1)$, we obtain $t \ge 3$ and $q \ge 4$. This case is already solved. Otherwise $z_1 \in V(A_1)$ and t = 2. Note that $x_1^3 \to A'_1$ and that z_1^+ has a positive neighbor in A_1 by Theorem 2.6. Therefore both

$$\{s_1, z_1^+\} \cup V(A_1) \text{ and } \{s_2, x_1^3, x_1^1\} \cup \bigcup_{i=2}^{q-2} V(A_i)$$

induce strong in-tournaments in D and thus, D is cycle complementary by Theorem 2.2.

If $|V(D_2)| = 3$, we obtain k = 3 and |V(D)| = 8. Since $|N^+(S)|, |N^+(D_2)| \ge k = 3$, there exist two non-incident arcs leading from D_2 to S and two non-incident arcs leading from S to D_2 . Now it is easy to check that D is cycle complementary.

Case 2: Let r = 2 (see Fig. 3). Note that $N^{-}(D_1) = S = N^{+}(D_p)$ and $d^{+}(s_i, D_1), d^{-}(s_i, D_p) \ge 1$ for every $i \in \{1, 2, ..., k\}$ (see Corollary 2.5 (c)). If we consider a strong component D_i , all predecessors and successors refer to the corresponding Hamiltonian cycle of D_i , unless stated otherwise. Furthermore, we may assume that r = 2 for any separating set S of size k. Now we consider three subcases depending on the value of k.

Subcase 2.1: Suppose that $k \ge 4$. Note that D_1 contains a vertex that dominates D_p and that every vertex $s \in S$ has at least one negative neighbor in D_p . It follows that if $|V(D_1)| = 1$ or S contains a vertex that dominates D_1 , the digraph D has a 3-cycle C. Since D is at least 4-connected, the remaining digraph D - V(C) is strong and hence, in view of Theorem 2.2, Hamiltonian. It follows that D is cycle complementary.

Therefore we may assume that $|V(D_1)| \ge 3$ and that for every vertex $s_i \in S$, there exists a vertex $y_i \in V(D_1)$ such that $y_i \to s_i \to y_i^+$.

Subcase 2.1.1: Suppose that $|V(D_p)| \ge 3$.

Assume that p = 2. Since each vertex of S has a positive as well as a negative neighbor in D_1 , it is possible to insert every vertex of S in a Hamiltonian cycle of D_1 . This extended cycle and a Hamiltonian cycle of D_2 are complementary cycles of D.

Therefore we may now assume that $p \geq 3$. Let C be a Hamiltonian cycle of D_1 . If, without loss of generality, $y_1 \neq y_2$, there exist complementary paths P_1 and P_2 of D_p such that the terminal vertex of P_1 dominates s_1 and the terminal vertex of P_2 dominates s_2 . It follows that

$$C_1 = s_1 C[y_1^+, y_2] P_1 s_1$$
 and $C_2 = s_2 C[y_2^+, y_1] D_2 D_3 \dots D_{p-1} P_2 s_2$

are vertex-disjoint cycles in D. We show next that all vertices s_m , where $m \ge 3$, can be inserted in at least one of these cycles. Note that the vertex s_m has a positive neighbor $y \in V(D_1)$. If, without loss of generality, $y \in V(C_1)$, the vertex s_m can be inserted in C_1 unless $s_m \to C_1$. Let P_2 and P_m be complementary paths of D_p such that the terminal vertex of P_2 dominates s_2 and the terminal vertex of P_m dominates s_m . Then

 $s_m s_1 C[y_1^+, y_2] P_m s_m$ and $s_2 C[y_2^+, y_1] D_2 D_3 \dots D_{p-1} P_2 s_2$

are vertex-disjoint cycles in D such that $s_m \in V(C_1)$.

- -0. 0. --- --- --- --- --- ---

Hence we may assume that $y_i = y_j$ for all $i, j \in \{1, 2, ..., k\}$, which implies that there exists a vertex $y \in V(D_1)$ such that $S \to y$. Note that S is a transitive tournament (otherwise S contains a 3-cycle and we are done). Let $P = s_1 s_2 ... s_k$ be the unique Hamiltonian path of S. Since $y_i = y_j$ for all i, j and $S \to y$, we have $(S - s_1) \to y^+$. It follows that D contains two vertex-disjoint paths from $\{y, y^+\}$ to $\{s_{k-1}, s_k\}$ and thus, we obtain two vertex-disjoint cycles C_1 , C_2 in D by adding the appropriate arcs from $\{s_{k-1}, s_k\}$ to $\{y, y^+\}$. Note that each of the cycles C_1 and C_2 contains at least one vertex of D_1 and one vertex of S. Using Lemma 2.1, we can show that the remaining vertices in $D_p, D_{p-1}, \ldots, D_2$ can be inserted in at least one of these cycles. It remains to show the same for the vertices of D_1 and S.

At first we consider the set S. Note that $s_i \to s_j$ for i < j and that s_k and s_{k-1} have k and k-1 positive neighbors in D_1 , respectively. In addition, recall that $N^-(s, D_p) \neq \emptyset$ for all $s \in S$. Using

these observations and Lemma 2.1, all vertices of $S - \{s_{k-1}, s_k\}$ can be inserted in at least one of the cycles.

Now consider the set D_1 . Assume that we have already inserted as much vertices as possible in C_1 and C_2 . Let C be a Hamiltonian cycle of D_1 and let C[v, w] be a path in D_1 such that $V(C[v, w]) \cap V(C_i) = \emptyset$ for i = 1, 2. Without loss of generality, w has a positive neighbor on C_1 .

If $s_k \in V(C_1)$ (and $s_{k-1} \in V(C_2)$), we deduce that w and s are adjacent for every vertex $s \in S$, since $(S-s_k) \to s_k$. Because of the maximality assumption for $|V(C_1) \cup V(C_2)|$, we also know that $w \to (S \cap V(C_1))$. If there exists a vertex $s \in (S \cap V(C_2))$ that dominates w, the digraph D contains a 3-cycle and thus, is cycle complementary. It follows that $w \to S$ and hence $w \to (V(C_1) \cup V(C_2))$. But this implies that the path C[v, w] can be inserted in C_2 , a contradiction.

Otherwise $s_{k-1} \in V(C_1)$ (and $s_k \in V(C_2)$). Note that w particularly dominates $V(C_1) \cap V(D_1)$. Furthermore, the set $N^+(s_k, D_1) \cap V(C_1)$ is not empty and hence, w and s_k are adjacent. Now the same argumentation as above yields a contradiction.

Subcase 2.1.2: Suppose that $|V(D_p)| = 1$. The case that $p \ge 3$ can be solved analogously to Subcase 2.1.1. Therefore it remains to check the case that p = 2. Let C be a Hamiltonian cycle of D_1 .

Subcase 2.1.2.1: Suppose there exist two indices $i \neq j$ such that $y_i \neq y_j$ and $s_i \rightarrow s_j$. Then we consider y_i^+ and y_j^+ . If $y_i^+ = y_j$ or $y_j^+ = y_i$, the digraph D has a 3-cycle and it is immediate that D is cycle complementary. Otherwise note that s_i and y_j are adjacent. Therefore either $s_i \rightarrow y_j$ and $s_i y_j x_1^+ s_i$ is a 3-cycle in D or $y_j \rightarrow s_i$ and

$$C_1 = s_i C[y_i^+, y_j] s_i$$
 and $C_2 = s_j C[y_j^+, y_i] x_1^1 s_j$

are vertex-disjoint cycles in D such that $V(D) - (V(C_1) \cup V(C_2)) = S - \{s_i, s_j\}$. Now we can show analogously to Subcase 2.1.1 that D is cycle complementary.

Subcase 2.1.2.2: Suppose there exist two integers $i \neq j$ such that $y_i = y_j$ and $y_i^+ = y_j^+$ and neither s_i nor s_j can be inserted at another position of the Hamiltonian cycle C of D_1 . Then, following Subcase 2.1.1 ($|V(D_p)| \geq 3$, $p \geq 3$ and $y_i = y_j$ for all $i, j \in \{1, 2, ..., k\}$), we see that D has complementary cycles.

Subcase 2.1.2.3: Suppose that $|\{y_1, y_2, \dots, y_k\}| = k$ and $E(D[S]) = \emptyset$.

If $y_i^+ = y_j$ for some $i, j \in \{1, 2, ..., k\}$, the digraph D has a 3-cycle and we are done. Otherwise, since $k \ge 4$, there exist vertices $s_i \ne s_j$ in S such that x_1^1 has a negative neighbor $v_1 \ne y_i^+$ on $C[y_i^+, y_j^-]$ and a negative neighbor $v_2 \ne y_j^+$ on $C[y_j^+, y_i^-]$. Furthermore, we may assume, without loss of generality, that $y_i \rightarrow y_j$ and thus,

$$C_1 = s_i C[y_i^+, v_1] x_1^1 s_i$$
 and $C_2 = s_j C[y_j^+, y_i] y_j s_j$

are vertex-disjoint cycles in D. Consider the vertices on $C[v_1^+, y_1^-]$. Using Lemma 2.1, it follows that all these vertices can be inserted in C_2 unless there exists a vertex $u \in V(C[v_1^+, y_1^-])$ with the following properties: D contains a Hamiltonian cycle C'_2 of $V(C_2) \cup V(C[u^+, y_1^-])$ and $u \to C'_2$. It follows that C'_2 and $C'_1 = s_i C[y_i^+, u] x_1^1 s_1$ are vertex-disjoint cycles in D that contain all vertices of D except $S - \{s_i, s_j\}$. Now let $m \notin \{i, j\}$. Since $x_1^1 \to s_m$ and $x_1^1 \in V(C_1)$, the vertex s_m can be inserted in C_1 if $N^+(s_m, C_1) \neq \emptyset$. Therefore we may assume that s_m has a positive neighbor on C'_2 and thus, s_m can be inserted in C'_2 unless $s_m \to C'_2$. But the latter implies that s_m and s_j are adjacent, a contradiction.

Subcase 2.2: Suppose that k = 3. First we show that the digraph D has a separating set $S = \{s_1, s_2, s_3\}$ such that $s_1s_2s_3s_1$ is a 3-cycle in D. For this it suffices to show that D contains a 3-cycle. Following the proof of Subcase 2.1, in all cases except the last we either find a separating set S of D which has the appropriate condition or we see that D is cycle complementary. It remains to check Subcase 2.1.2.3 $(p = 2, |V(D_1)| \ge 3, |V(D_2)| = 1, |\{y_1, y_2, y_3\}| = 3$ and $E(D[S]) = \emptyset$. In addition, we may assume that $y_i^+ \neq y_j$ for all $i, j \in \{1, 2, 3\}$. Now we consider the vertices y_1, y_2

and y_3 . Since $y_i \in N^-(x_1^1)$ for each $i \in \{1, 2, 3\}$, the subdigraph $D[\{y_1, y_2, y_3\}]$ is a tournament. We may assume, without loss of generality, that $y_1 \to y_2$. If y_3 is on $C[y_1^+, y_2]$, we can show that D is cycle complementary following the proof in Subcase 2.1.2.3. Therefore we may assume that y_3 is a vertex of the path $C[y_2^+, y_1]$. Analogously we deduce that D has the arcs y_3y_1 and y_2y_3 and thus, D contains the 3-cycle $y_1y_2y_3y_1$. Hence, we may assume that $S = \{s_1, s_2, s_3\}$ is a separating of D such that $s_1s_2s_3s_1$ is a 3-cycle.

Subcase 2.2.1: Suppose that $|V(D_p)| \geq 3$.

Subcase 2.2.1.1: Suppose that $|V(D_1)| \ge 3$ or $p \ge 3$.

Subcase 2.2.1.1.1: Assume that $|V(D_1)| \ge 3$ and there exists a vertex of S that dominates D_1 , say $s_1 \to D_1$. Since k = 3, there exist vertices $y_1, y_2, y_3 \in V(D_1)$ such that $\{y_1, y_2, y_3\} \to D_2$ and at least one of these vertices, say y_1 , dominates D_p . If S does not dominate D_1 , we can choose y_1 such that $y_1 \to s_i \to y_1^+$, where i = 2 or i = 3. Furthermore, D has three non-incident arcs $z_j s_j$, where j = 1, 2, 3, leading from D_p to S. Let C and C' be Hamiltonian cycles of D_1 and D_p , respectively. If i = 2, the cycles

 $s_3s_1C[y_2^+, y_1]C'[z_2^+, z_3]s_3$ and $s_2C[y_1^+, y_2]D_2D_3...D_{p-1}C'[z_3^+, z_2]s_2$

and if i = 3, the cycles

$$s_1 C[y_2^+, y_1] C'[z_2^+, z_1] s_1$$
 and $s_2 s_3 C[y_1^+, y_2] D_2 D_3 \dots D_{p-1} C'[z_1^+, z_2] s_2$

are complementary in D.

Subcase 2.2.1.1.2: Assume that $|V(D_1)| \ge 3$ and no vertex of S dominates D_1 . Then we deduce that $p \ge 3$ (otherwise D_2 and $D - V(D_2)$ are strong complementary subdigraphs of D). This case can be solved analogously to Subcase 2.1.1,

Subcase 2.2.1.1.3: Assume that $|V(D_1)| = 1$ and $p \ge 3$. Then $|V(D_2)| = 1$, since otherwise D_2 and $D - V(D_2)$ are strong complementary subdigraphs of D. We may assume, without loss of generality, that $s_1 \to D_2$ and thus,

$$s_1 D_2 D_3 \dots D_{p-1} C'[z_2^+, z_1] s_1$$
 and $s_2 s_3 D_1 C'[z_1^+, z_2] s_2$

are complementary cycles of D, where z_1 , z_2 and C are chosen as in Subcase 2.2.1.1.1.

Subcase 2.2.1.2: Suppose that $|V(D_1)| = 1$ and p = 2. Then $S \to D_1$ and $|V(D_2)| \ge 4$, since $|V(D)| \ge 8$. In addition, we have $|N^+(s_i, D_2)| \ge 1$ for each $i \in \{1, 2, 3\}$ and $|N^+(S, D_2)| \ge 2$. Furthermore, D has three non-incident arcs leading from D_2 to S. Let $C = b_1 b_2 \dots b_t b_1$ be a Hamiltonian cycle of D_2 , where $t \ge 4$. We may assume, without loss of generality, that D has the arcs $b_1 s_1$, $b_i s_2$ and $b_j s_3$, where $2 \le i \ne j \le t$.

If there exists an arc $b_q b_2$ leading from $C[b_3, b_t]$ to b_2 , the cycles

 $b_2 b_3 \dots b_q b_2$ and $s_1 s_2 s_3 x_1^2 C[b_{q+1}, b_1] s_1$

are complementary in D. Hence, since $k \ge 3$, at least one vertex of S dominates b_2 . We consider the three cases $s_i \to b_2$ for $i \in \{1, 2, 3\}$.

Subcase 2.2.1.2.1: If $s_3 \rightarrow b_2$, the cycles

$$s_2 s_3 C[b_2, b_i] s_2$$
 and $s_1 x_1^2 C[b_{i+1}, b_1] s_1$

are complementary in D.

Subcase 2.2.1.2.2: Suppose that $s_2 \to b_2$ and $s_3 \notin N^-(b_2)$. In this case

$$C_1 = s_2 C[b_2, b_i] s_2$$
 and $C_2 = s_1 x_1^2 C[b_{i+1}, b_1] s_1$

are vertex-disjoint cycles that contain all vertices of D but s_3 .

If $b_m \to s_3 \to b_{m+1}$ for some index $m \notin \{1, i\}$, we can insert s_3 in one of these cycles and we are done.

Otherwise we deduce that $N^+(s_3, C[b_2, b_i]) = \emptyset$ and $b_i \to s_3 \to C[b_{i+1}, b_1]$. It follows that $2 \leq j \leq i-1$. We can analogously show that $N^+(s_1, C[b_{i+1}, b_j]) = \emptyset$ and $b_j \to s_1 \to C[b_{j+1}, b_i]$ and that $N^+(s_2, C[b_{j+1}, b_1]) = \emptyset$ and $b_1 \to s_2 \to C[b_2, b_j]$. Note that $s_1, s_3 \notin N^-(b_2)$. Hence $s_2 x_1^2 b_1 s_2$ is a 3-cycle and a separating of D such that the initial component of $D - \{s_2, x_1^2, b_1\}$ is the single vertex b_2 . It follows that $b_2 \to \{s_1, s_3, b_3, b_4, \dots, b_t\}$.

If $b_q s$ is an arc of D, where $3 \le q \le t - 1$, the cycles

$$b_2 b_{q+1} b_{q+2} \dots b_2$$
 and $ss^+ s^- x_1^2 C[b_3, b_q]s$

are complementary in D.

Therefore we may assume that $N^{-}(S) = \{b_t, b_1, b_2\}$ (which implies that j = 2 and i = t). It follows that $C_3 = b_1 b_2 b_t b_1$ is a 3-cycle and a separating set of D. Furthermore, since $S \to x_1^2 \to C[b_3, b_{t-1}]$, the digraph $D - V(C_3)$ has at least three strong components. We have solved this case in Subcase 2.2.1.1.

Subcase 2.2.1.2.3: Suppose that $N^{-}(b_2) = \{b_1, s_1, x_1^2\}$. Then $N^{-}(b_2)$ induces a 3-cycle in D and is a separating set of D such that the initial component of $D - \{b_1, s_1, x_1^2\}$ is the single vertex b_2 . Hence, we obtain complementary cycles of D following the argumentation in Subcase 2.2.1.2.2.

Subcase 2.2.2: Suppose that $|V(D_p)| = 1$. Since $|V(D)| \ge 8$ and k = 3, we have $|V(D'_2)| \ge 4$. Furthermore, $|N^+(D_{p-1}, S)| \ge 2$ and therefore we may assume, without loss of generality, that $\{s_1, s_2\} \subseteq N^+(D_{p-1})$.

Subcase 2.2.2.1: Suppose that $p \ge 3$ and $V(D_1) \ge 3$.

Subcase 2.2.2.1.1: Assume that at least two vertices of S dominate D_1 , say $\{s_1, s_2\} \to D_1$. Then there exist two distinct vertices $y_1 \neq y_2$ in D_1 such that $y_1 \to x_1^1$ and $y_2 \to D_2$. If $s_3 \neq D_1$, we can choose y_1 such that $y_1 \to s_3 \to y_1^+$. Furthermore, we may assume that $s_1 \in N^+(D_{p-1})$. Let C be a Hamiltonian cycle of D_1 . It follows that

$$C_1 = s_1 C[y_1^+, y_2] D_2 D_3 \dots D_{p-1} s_1$$
 and $C_2 = s_2 C[y_2^+, y_1] x_1^1 s_2$

are vertex-disjoint cycles in D that include all vertices of D but s_3 . Note that $s_3 \to s_1$. By Lemma 2.1, the vertex s_3 either can be inserted in C_1 or $s_3 \to C_1$. In the first case it is immediate that D is cycle complementary and in the latter case $s_2 \in N^+(D_{p-1})$. But then

$$s_2 C[y_1^+, y_2] D_2 D_3 \dots D_{p-1} s_2$$
 and $s_3 s_1 C[y_2^+, y_1] x_1^1 s_3$

show that D is cycle complementary.

Subcase 2.2.2.1.2: Assume that exactly one vertex of S, say s_1 , dominates D_1 .

If $s_2 \in N^+(D_{p-1})$, we choose a vertex $y_1 \in V(D_1)$ such that $y_1 \to s_2 \to y_1^+$. Let C be a Hamiltonian cycle of D_1 . Then

 $s_3s_1C[y_2^+, y_1]x_1^1s_3$ and $s_2C[y_1^+, y_2]D_2D_3\dots D_{p-1}s_2$

are complementary cycles of D.

Otherwise we have $N^+(D_{p-1}) = \{x_1^1, s_1, s_3\}$. Now we choose y_1 such that $y_1 \to s_3 \to y_1^+$ and we consider

 $C_1 = s_1 C[y_2^+, y_1] x_1^1 s_1$ and $C_2 = s_3 C[y_1^+, y_2] D_2 D_3 \dots D_{p-1} s_3.$

These cycles are vertex-disjoint and contain all vertices of D except s_2 . It follows that $s_2 \to D_j$ for $j = 2, 3, \ldots, p-1$ (otherwise C_2 can be extended by s_2). Hence

$$s_2 D_2 D_3 \dots D_{p-1} x_1^1 s_2$$
 and $s_3 s_1 C[y_1^+, y_1] s_3$

are complementary cycles of D.

Subcase 2.2.2.1.3: Assume that all vertices of S can be inserted in the Hamiltonian cycle D_1 . This case can be solved analogously to Subcase 2.1.2.

Subcase 2.2.2.2: Suppose that $p \ge 3$ and $|V(D_1)| = 1$. Then $S \to x_1^2$ and $|V(D_2)| = 1$, since otherwise D_2 and $D - V(D_2)$ are strong complementary subdigraphs of D. Since $k \ge 3$, at least one vertex of S, say s_1 , dominates x_2^2 .

If $s_1 \in N^+(D_{p-1})$, the cycles

$$s_1 D_2 D_3 \dots D_{p-1} s_1$$
 and $s_2 s_3 x_1^2 x_1^1 s_2$

are complementary in D.

Otherwise we have $N^+(D_{p-1}) = \{x_1^1, s_2, s_3\}$ and

 $s_3 s_1 D_2 D_3 \dots D_{p-1} s_3$ and $s_2 x_1^2 x_1^1 s_2$

show that D is cycle complementary.

Subcase 2.2.2.3: Suppose that p = 2. Then $|V(D_1)| \ge 4$. Let $C = a_1 a_2 \dots a_q a_1$ be a Hamiltonian cycle of D_1 , where $q \ge 4$. Since k = 3, $|V(D_2)| = 1$ and $s_1 s_2 s_3 s_1$ is a 3-cycle in D, all vertices of S can be inserted in C.

Subcase 2.2.2.3.1: Suppose that D_1 contains vertices a_i, a_j, a_m such that $a_i \to s_1 \to a_{i+1}, a_j \to s_2 \to a_{j+1}$ and $a_m \to s_3 \to a_{m+1}$ and $1 \leq i < j < m \leq q$. Then, since $q \geq 4$, we may assume, without loss of generality, that $i + 1 \neq j$. Note that s_1 and a_j are adjacent.

If D has the arc $a_j s_1$, the cycles

$$s_1C[a_{i+1}, a_j]s_1$$
 and $s_2C[a_{j+1}, a_m]s_3C[a_{m+1}, a_i]x_1^1s_2$

are complementary in D.

Otherwise $s_1 \to a_j$ and $C_3 = s_1 a_j x_1^1 s_1$ is a 3-cycle in D. If $D - V(C_3)$ is strong, we are done. If $|N^+(x, D - V(C_3))| \ge 1$ for all vertices $x \in V(D) - V(C_3)$, the terminal component of $D - V(C_3)$ is not a single vertex. We have solved this case in Subcase 2.2.1. Hence, we may assume that $N^+(a_{j-1}) = V(C_3)$. If $a_i \to a_j$, the cycles

$$s_1C[a_{i+1}, a_{j-1}]s_1$$
 and $s_2C[a_{j+1}, a_m]s_3C[a_{m+1}, a_i]a_jx_1^1s_2$

are complementary in D. Therefore we may assume that D has the arc $a_j a_i$. Now we consider the 3-cycle $C'_3 = s_1 a_j a_i s_1$. Following the argumentation above, we deduce that $N^+(a_{i-1}) = V(C'_3)$. But then

$$a_{i+1} \dots a_j a_i$$
 and $s_1 s_2 C[a_{j+1}, a_m] s_3 C[a_{m+1}, a_{i-1}] x_1^1 s_2$

show that D is cycle complementary. We can analogously solve the case $1 \le i < m < j \le q$.

Subcase 2.2.2.3.2: Suppose that a_i , a_j and a_m can be chosen such that $|\{i, j, m\}| = 2$, but not such that $|\{i, j, m\}| = 3$. We may assume, without loss of generality, that $a_i = a_j$ and $a_{i+1} = a_{j+1}$. It follows that s_3 and a_i are adjacent.

If $a_i \to s_3$, the cycles

$$s_3C[a_{m+1}, a_i]s_3$$
 and $s_1s_2C[a_{i+1}, a_m]x_1^1s_1$

are complementary in D.

Othwerwise $s_3 \to a_i$ and $C_3 = s_3 a_i x_1^1 s_3$ is a 3-cycle in *D*. Like in Subcase 2.2.2.3.1 it follows that $N^+(a_{i-1}) = V(C_3)$ and thus,

 $s_2 s_3 a_i s_2$ and $s_1 C[a_{i+1}, a_{i-1}] x_1^1$

show that D is cycle complementary.

 a_i

Subcase 2.2.2.3.3: Suppose that a_i , a_j and a_m can be chosen such that $|\{i, j, m\}| = 1$, but not such that $|\{i, j, m\}| > 1$. This case can be solved analogously to Subcase 2.1.2.

Subcase 2.3: Suppose that k = 2.

Subcase 2.3.1: Suppose that $|V(D_p)| \ge 3$. Note that the case $p \ge 3$ and $|V(D_1)| \ge 3$ can be solved analogously to Subcase 2.2.

Subcase 2.3.1.1: Suppose that $p \ge 3$ and $|V(D_1)| = 1$. Then D[S] is a tournament and we may assume, without loss of generality, that $s_1 \to s_2$.

If $|V(D_2)| \ge 3$, it is easy to see that D_2 and $D - V(D_2)$ are complementary strong subdigraphs of D.

Otherwise we have $|V(D_2)| = 1$. Since $|N^-(D_2)| \ge 2$ and $N^-(D_2) \subseteq (V(D_1) \cup S)$, it is immediate that D_2 has at least one negative neighbor s_i in S. Let P_1 and P_2 be complementary paths of D_p such that the last vertex of P_j dominates s_j for j = 1, 2. Then

$$s_{3-i}x_1^2 P_{3-i}s_{3-i}$$
 and $s_i D_2 D_3 \dots D_{p-1}P_i s_i$

are complementary cycles of D.

Subcase 2.3.1.2: Suppose that p = 2 and $|V(D_1)| \ge 3$.

If both s_1 and s_2 have positive and negative neighbors in D_1 , a Hamiltonian cycle of D_1 can be extended by s_1 and s_2 . This extended cycle and a Hamiltonian cycle of D_2 are complementary cycles of D.

Therefore we may assume that at least one vertex of S dominates D_1 . If $S \to D_1$, the digraph D is cycle complementary, since $|N^-(D_2, D_1)|$, $|N^-(S, D_2)| \ge 2$. Otherwise we assume that $s_i \to D_1$ and that s_{3-i} has positive and negative neighbors in D_1 for an index $i \in \{1, 2\}$. It follows that D_1 contains vertices $y_1 \neq y_2$ such that $y_1 \to D_2$ and $y_2 \to s_{3-i} \to y_2^+$. Let P_1 and P_2 be complementary paths of D_p such that the last vertex of P_j dominates s_j for j = 1, 2 and let C be a Hamiltonian cycle of D_1 . Then

$${}_{i}C[y_{1}^{+}, y_{2}]P_{i}s_{i}$$
 and $s_{3-i}C[y_{2}^{+}, y_{1}]P_{3-i}s_{3-i}$

are complementary cycles of D.

Subcase 2.3.1.3: Suppose that p = 2 and $|V(D_1)| = 1$. Then $|V(D_2)| \ge 5$, since $|V(D)| \ge 8$. Furthermore, D[S] is a tournament and hence we may assume, without loss of generality, that $s_1 \to s_2$. Let $C = b_1 b_2 \dots b_t b_1$ be a Hamiltonian cycle of D_2 , where $t \ge 5$. Since k = 2, we have $|N^-(s_1, D_2)| \ge 2$, $|N^+(s_2, D_2)| \ge 1$ and $|N^-(s_2, D_2)| \ge 1$. Therefore we may assume, without loss of generality, that D has the arcs $b_1 s_1$, $b_i s_2$ and $s_2 b_{i+1}$, where $i \ne 1$. It follows that D has no arc $b_q b_2$ leading from $C[b_3, b_t]$ to b_2 , because otherwise

$$b_q b_2 b_3 \dots b_q$$
 and $s_1 s_2 x_1^2 C[b_{q+1}, b_1] s_1$

are complementary cycles of D.

Subcase 2.3.1.3.1: Suppose that $b_{i+1} \notin N^-(s_1)$. We may assume, without loss of generality, that s_1 has no negative neighbor on $C[b_{i+1}, b_t]$. Considering $D - b_1$, it is immediate that D has an arc leading from $C[b_{i+1}, b_t]$ to $\{b_2, b_3, \ldots, b_i, s_1, s_2, x_1^2\}$, since D is 2-connected.

If D has an arc $b_j s_2$, where $i+2 \leq j \leq t$, we obtain $s_1 \to \{b_{i+1}, b_{i+2}, \ldots, b_j\}$ because of the choice of b_1 . It follows that

$$s_1 C[b_{i+1}, b_1] s_1$$
 and $s_2 x_1^2 C[b_2, b_i] s_2$

are complementary cycles of D.

Otherwise D has an arc $b_j b_m$, where $i + 1 \le j \le t$ and $3 \le m \le i$. In this case

$$C_1 = s_1 x_1^2 C[b_{j+1}, b_1] s_1$$
 and $C_2 = s_2 C[b_{i+1}, b_j] C[b_m, b_i] s_2$

are vertex-disjoint cycles in D. Using Lemma 2.1, it follows that there exists a vertex b_q , where $2 \leq q \leq m-1$, such that all vertices of $C[b_{q+1}, b_{m-1}]$ can be inserted in C_2 and $b_q \to V(C_2) \cup V(C[b_{q+1}, b_{m-1}])$. Hence, D has particularly the arc $b_q b_{i+1}$ and thus,

$$C_{1}^{'} = b_{q}C[b_{i+1}, b_{q}] \text{ and } C_{2}^{'} = s_{2}x_{1}^{2}C[b_{q+1}, b_{i}]s_{2}$$

are vertex-disjoint cycles in D such that C'_1 and C'_2 contain all vertices of D except s_1 . Since $s_1 \to x_1^2$, we conclude that $s_1 \to C'_2$ which implies that D has the arc $s_1 b_m$. Because of the choice of b_1 , it now follows that $s_1 \to C[b_{i+1}, b_j]$ and thus, the cycles

$$s_1 C[b_{i+1}, b_1] s_1$$
 and $s_2 x_1^2 C[b_2, b_i] s_2$

show that D is cycle complementary.

Subcase 2.3.1.3.2: Suppose that $b_{i+1} \in N^-(s_1)$. Then we may assume, without loss of generality, that $b_{i+1} = b_1$. Since $|N^-(s_1, D_2)| \ge 2$, the vertex s_1 has a negative neighbor $b_j \ne b_1$. Note that s_1 and b_t are adjacent.

Subcase 2.3.1.3.2.1: Assume that $b_t \to s_1$. Then we consider $D = \{s_1, b_t\}$.

If D has an arc bs_2 such that $b \notin \{b_t, b_1, s_1, x_1^2\}$, the cycles

$$s_2 C[b_1, b] s_2$$
 and $s_1 x_1^2 C[b^+, b_t] s_1$

are complementary in D.

Otherwise $\{s_1, b_t\}$ is a separating set of D. Since $s_2 \to x_1^2 \to (D - \{b_t, s_1, s_2\})$, the digraph $D - \{s_1, b_t\}$ has at least three strong components and the first strong component has only one vertex. We already have solved this case in Subcase 2.3.1.1.

Subcase 2.3.1.3.2.2: Assume that $s_1 \to b_t$. Following the argumentation in Subcase 2.3.1.3.2.1, we deduce that D has an arc bs_2 such that $b \notin \{b_t, b_1, s_1, x_1^2\}$. Now we consider $D' := D - \{b_1, x_1^2\}$. In the following we will show that $N^-(b_2) \neq \{b_1, x_1^2\}$. Assume to the contrary that $N^-(b_2) = \{b_1, x_1^2\}$ which implies that the initial component of D' is the single vertex b_2 . It follows that $b_2 \to \{b_3, b_4, \ldots, b_t, s_1, s_2\}$.

If s_2 has a negative neighbor $b \notin \{b_2, b_t\}$, the cycles

$$C_1 = b_2 C[b^+, b_2]$$
 and $C_2 = s_2 x_1^2 C[b_3, b] s_2$

are vertex-disjoint and contain all vertices of D except s_1 . If s_1 can be inserted in C_2 , we are done. Otherwise $s_1 \to C_2$ and thus,

$$s_1 C[b_3, b_1] s_1$$
 and $s_2 x_1^2 b_2 s_2$

are complementary cycles of D.

Otherwise we have $N^{-}(s_2, D_2) = \{b_2, b_t\}$. In this case we consider $D'' := D - \{b_1, b_2\}$. If $N^{-}(s_1) = \{b_1, b_2\}$, the initial component of D'' is the single vertex s_1 . It follows that $s_1 \rightarrow \{b_3, b_4, \ldots, b_t, s_2, x_1^2\}$ and thus,

$$s_2 x_1^2 b_2 s_2$$
 and $s_1 C[b_3, b_1] s_1$

are complementary cycles of D. Therefore we assume that there exists an index $3 \le m \le t-1$ such that $b_m \to s_1 \to C[b_{m+1}, b_t]$. But then

$$b_2C[b_{m+1}, b_t]s_2b_1b_2$$
 and $s_1x_1^2C[b_3, b_m]s_1$

show that D is cycle complementary.

All in all we have shown that $N^{-}(b_2) \neq \{b_1, x_1^2\}$. If D has the arc s_2b_2 , the cycles

$$s_2 C[b_2, b_t] s_2$$
 and $s_1 x_1^2 b_1 s_1$

are complementary in *D*. It remains to check the case that *D* has the arc s_1b_2 . Since $|N^-(s_1, D_2)| \ge 2$, there exists an integer $3 \le m \le t - 1$ such that $b_m \to s_1 \to C[b_{m+1}, b_t]$. In addition, following the argumentation in Subcase 2.3.1.3.2.1, *D* has an arc bs_2 such that $b \notin \{b_t, b_1, s_1, x_1^2\}$. The vertex-disjoint cycles

$$C_1 = s_1 C[b_2, b_m] s_1$$
 and $C_2 = s_2 x_1^2 C[b_{m+1}, b_t] s_2$

contain all vertices of D but b_1 . It follows that $b_1 \to C_1$, since b_1 can be inserted in C_1 otherwise. But now

$$s_2 x_1^2 C[b_2, b] s_2$$

and

$$\begin{cases} s_1 C[b_{m+1}, b_1] C[b^+, b_m] s_1 & \text{if } b \in \{b_2, b_3, \dots, b_m\} \\ s_1 C[b^+, b_1] s_1 & \text{if } b \in \{b_{m+1}, b_{m+2}, \dots, b_{t-1} \end{cases}$$

are complementary cycles of D.

Subcase 2.3.2: Suppose that $|V(D_p)| = 1$.

Subcase 2.3.2.1: Suppose that $p \ge 3$ and $|V(D_1)| \ge 3$. Then $|N^+(D_{p-1}, S)| \ge 1$ and, in addition, D has two non-incident arcs leading from $V(D_{p-1}) \cup \{x_1^1\}$ to S.

Subcase 2.3.2.1.1: Assume that $S \to D_1$. Then D[S] is a tournament and hence we can assume, without loss of generality, that D has the arc s_1s_2 . Furthermore, there exist vertices $y_1 \neq y_2$ in D_1 such that $y_1 \to D_2$ and $y_2 \to x_1^1$. Now it is easy to see that D is cycle complementary.

Subcase 2.3.2.1.2: Assume that $s_1 \to D_1$ and $N^-(s_2, D_1) \neq \emptyset$. Then D_1 contains vertices $y_1 \neq y_2$ such that $y_1 \to D_2$ and $y_2 \to x_1^1$. In addition, y_2 can be chosen such that $y_2 \to s_2 \to y_2^+$.

If $s_2 \in N^+(D_{p-1})$, let C be a Hamiltonian cycle of D_1 . Then

$$s_1 C[y_1^+, y_2] x_1^1 s_1$$
 and $s_2 C[y_2^+, y_1] D_2 D_3 \dots D_{p-1} s_2$

are complementary cycles of D.

Otherwise we deduce that $N^+(D_{p-1}) = \{s_1, x_1^1\}$. If $|V(D_{p-1})| \ge 3$, the digraph D has two non-incident arcs z_1s_1 , $z_2x_1^1$ leading from D_{p-1} to $\{s_1, x_1^1\}$. Let C' be a Hamiltonian cycle of D_{p-1} . Then

$$s_1 C[y_1^+, y_2] C'[z_2^+, z_1] s_1$$
 and $s_2 C[y_2^+, y_1] D_2 D_3 \dots D_{p-2} C'[z_1^+, z_2] x_1^1 s_2$

are complementary cycles of D. Therefore we may assume that $V(D_{p-1}) = \{z\}$. Note that $z \to s_1$ or $z \to s_2$.

Subcase 2.3.2.1.2.1: Suppose that $p \ge 4$. It follows that $x_1^1 \in N^+(D_{p-2})$. Hence

$$s_1 C[y_1^+, y_2] z s_1$$
 and $s_2 C[y_2^+, y_1] D_2 D_3 \dots D_{p-2} x_1^1 s_2$

are complementary cycles of D.

Subcase 2.3.2.1.2.2: Suppose that p = 3 and $z \to s_2$. Then

 $s_2 C[y_2^+, y_1] z s_2$ and $s_1 C[y_1^+, y_2] x_1^1 s_1$

are complementary cycles of D.

Subcase 2.3.2.1.2.3: Suppose that p = 3 and $z \rightarrow s_1$.

If there exists a vertex $y \neq y_2$ in D_1 such that $y \to x_1^1$, the cycles

 $s_2 C[y_2^+, y] x_1^1 s_2$ and $s_1 C[y^+, y_2] z s_1$

show that D is cycle complementary.

Otherwise $\{y_2, z\}$ is a separating set of D such that the initial strong component of $D - \{y_2, z\}$ is the single vertex x_1^1 . Since there is no arc between x_1^1 and $D_1 - y_2$, the decomposition of $D - \{y_2, z\}$ according to Theorem 2.6 has at least three strong components. This case was solved in Subcase 1.

Subcase 2.3.2.1.3: Assume that $N^{-}(s_i, D_1) \neq \emptyset$ for each $i \in \{1, 2\}$. We may assume, without loss of generality, that $s_2 \in N^{+}(D_{p-1})$. Let C be a Hamiltonian cycle of D_1 .

If there exist vertices $y_1 \neq y_2$ in D_1 such that $y_i \rightarrow s_i \rightarrow y_i^+$ for $i \in \{1, 2\}$, the cycles

 $s_1 C[y_1^+, y_2] x_1^1 s_1$ and $s_2 C[y_2^+, y_1] D_2 D_3 \dots D_{p-1} s_2$

are complementary in D.

The case that there is no pair $y_1 \neq y_2$ of vertices in D_1 such that $y_i \rightarrow s_i \rightarrow y_i^+$ for $i \in \{1, 2\}$ can be solved analogously to Subcase 2.1.1.

Subcase 2.3.2.2: Suppose that $p \ge 4$ and $|V(D_1)| = 1$. Then we conclude that $N^-(D_2, S) \ne \emptyset$ and $N^+(D_{p-1}, S) \ne \emptyset$. Therefore we may assume that $s_i \in N^-(D_2)$ for an index $i \in \{1, 2\}$. Note that $|V(D_2)| = 1$, since otherwise D_2 and $D - V(D_2)$ are strong complementary subdigraphs of D.

If $s_i \in N^+(D_{p-1})$, the cycles

$$s_i D_2 D_3 \dots D_{p-1} s_i$$
 and $s_{3-i} x_1^2 x_1^1 s_{3-i}$

show that D is cycle complementary.

The remaining case that $N^+(D_{p-1}) = \{s_{3-i}, x_1^1\}$ can be solved analogously to Subcase 2.3.2.1.

Subcase 2.3.2.3: Suppose that p = 3 and $|V(D_1)| = 1$. Then $|V(D_2)| \ge 4$, since $|V(D)| \ge 8$. Furthermore, we may assume, without loss of generality, that $s_1 \to s_2$. But now a Hamiltonian cycle of D_2 and $s_1s_2x_1^2x_1^1s_1$ are complementary cycles of D.

Subcase 2.3.2.4: Suppose that p = 2. Then $|V(D_1)| \ge 5$, since $|V(D)| \ge 8$. In addition, at most one vertex of S dominates D_1 . Note that every vertex of D has at least three negative neighbors, since otherwise D is cycle complementary by the case $|V(D_1)| = 1$.

Subcase 2.3.2.4.1: Suppose that there exists a vertex $s \in S$ such that $s \to D_1$. Then we may assume, without loss of generality, that $s_1 \to D_1$ and $N^-(s_2, D_1) \neq \emptyset$. It follows that D has the arc s_2s_1 . Furthermore, D_1 contains vertices $y_1 \neq y_2$ such that $y_1 \to x_1^1$ and $y_2 \to s_2 \to y_2^+$. Since $|N^-(s_2)| \geq 3$, there is a vertex $y \neq y_2$ in D_1 such that $y \to \{s_2, x_1^1\}$. Let C be a Hamiltonian cycle of D_1 . Then

$$s_2C[y_2^+, y]s_2$$
 and $s_1C[y^+, y_2]x_1^1s_1$

are complementary cycles of D.

Suppose now that neither s_1 nor s_2 dominates D_1 . Note that we can solve the case that y_1 cannot be chosen unequal to y_2 analogously to Subcase 2.1.1. We consider the following cases.

Subcase 2.3.2.4.2: Suppose that y_1 and y_2 can be chosen such that, without loss of generality, $y_1^+ = y_2$, but not such that $y_i^+ \neq y_{3-i}$ for each $i \in \{1, 2\}$. Let C be a Hamiltonian cycle of D_1 .

Subcase 2.3.2.4.2.1: Assume that $s_2 \rightarrow s_1$. Then D has the arc s_2y_1 , since otherwise

$$s_1 y_2 x_1^1 s_1$$
 and $s_2 C[y_2^+, y_1] s_2$

are complementary cycles of D. It follows that $s_2 \to D_1 - y_2$, a contradiction to the fact that $|N^-(s_2)| \ge 3$.

Subcase 2.3.2.4.2.2: Assume that $s_1 \to s_2$. We consider the positive neighborhood of s_1 and the negative neighborhood of s_2 .

If $T := N^+(s_1) = \{s_2, y_2\}$, the digraph D - T has at least three strong components s_1, x_1^1 and $D_1 - y_2$ and thus, D is cycle complementary by one of the Subcases 2.3.2.1, 2.3.2.2 or 2.3.2.3.

If $U := N^{-}(s_2) = \{s_1, x_1^1, y_2\}$, the set U is a minimal separating set of D. It follows that $\{s_2\}$ is the initial component of D - U and thus, $s_2 \to D_1 - U$. Let $y \neq y_1$ be a negative neighbor of s_1 in D_1 . Then

$$s_1 C[y_1^+, z_1] s_1$$
 and $s_2 C[z_1^+, y] x_1^1 s_1$

are complementary cycles of D.

All in all we may assume that $|N^+(s_1)| \ge 3$ and $|N^-(s_2)| \ge 4$. It follows that D has the arc $s_1y_2^+$. In addition, s_2 dominates the successor of y_2^+ on C and has a negative neighbor $z_2 \notin \{x_1^1, s_1, y_2\}$. Note that y_2^+ has a positive neighbor w besides its successor on C.

If $w = x_1^1$, the cycles

$$s_1 y_2^+ x_1^1 s_1$$
 and $s_2 C[y_2^{++}, y_2] s_2$

are complementary in D.

If w is on $C[z_2^+, y_1]$, the cycles

$$C_1 = s_1 y_1^+ y_2^+ C[w, y_1] s_1$$
 and $C_2 = s_2 C[y_2^{++}, z_2] x_1^1 s_2$

are vertex-disjoint. Using Lemma 2.1, it follows that if D is not cycle complementary, there is a vertex $u \in V(C[z_2^+, w^-])$ such that $D[\{s_1, x_1^1\} \cup V(C[u^+, y_2^+])]$ has a Hamiltonian cycle C' and $u \to C'$. But then C' and $s_2C[y_2^{++}, u]x_1^1s_2$ show that D is cycle complementary.

If w is on $C[y_2^{++}, z_2]$, either $y_2^+ \to C[y_2^+, w]$ or there exists a vertex $u \in V(C[y_2^+, w])$ such that $u \to y_2^+ \to u^+$. The latter implies that s_i and u are adjacent for each i = 1, 2 and thus, $s_i \to C[y_2^+, u]$ for i = 1, 2. Now we can apply the same arguments as above on u^- and $N^+(u^-)$ instead of y_2^+ and $N^+(y_2^+)$. In the former case we can apply the same arguments as above on w^- and $N^+(w^-)$ instead of y_2^+ and $N^+(y_2^+)$. By doing this, we obtain complementary cycles of D in a finite number of steps.

Subcase 2.3.2.4.2.3: Assume that s_1 and s_2 are not adjacent. Recall that s_1 has at least one positive neighbor in D_1 besides y_1^+ and that neither s_1 nor s_2 can be inserted at another position in C. It is easy to see that these observations lead to a contradiction to the fact that s_1 and s_2 are not adjacent.

Subcase 2.3.2.4.3: Suppose that y_1 and y_2 can be chosen such that $y_1 \neq y_2$ and $y_i^+ \neq y_{3-i}$ for each index i = 1, 2. In this case we may assume, without loss of generality, that D has the arc y_2y_1 . Note that if x_1^1 has a negative neighbor on the path $C[y_2^+, y_1^-]$, with the help of Lemma 2.1 it is easy to check that D is cycle complementary (choose $y \in N^-(x_1^1)$ such that $C[y, y_1^-]$ has minimal length).

Subcase 2.3.2.4.3.1: Assume that s_1 and s_2 are not adjacent.

Assume that there is an arc uy_1^+ in D such that u is on $C[y_2^+, y_1^-]$. Then u and s_1 are adjacent. Due to the observations above, it follows that $s_1 \to C[u, y_2^+]$. Hence, s_1 and s_2 are adjacent, a contradiction.

Considering $D-y_1$, it is easy to see that D has an arc leading from $\{s_2\} \cup V(C[y_2^+, y_1^-])$ to $C[y_1^+, y_2]$. Let v_1v_2 be such an arc such that $C[y_1^+, v_2]$ has minimal length and, under this condition, $C[v_1, y_1]$ has minimal length. Let $v_2^- = v_3$. Since $N^-(S, C[y_2^+, y_1^-]) = \emptyset$ and $E(D[S]) = \emptyset$, we conclude that $v_3 \to C[y_2^+, v_1]$ and $v_3 \to s_2$.

Now we consider the vertex-disjoint cycles

$$C_1 = s_1 C[y_1^+, v_3] x_1^1 s_1$$
 and $C_2 = s_2 C[y_2^+, v_1] C[v_2, y_2] s_2$.

If $v_1 = y_1$ or if all vertices of the path $C[v_1^+, y_1]$ can be inserted in C_1 , it is immediate that D is cycle complementary. Otherwise there exists a vertex on $C[v_1^+, y_1]$ that dominates C_1 . Since S

has no negative neighbors on $C[v_1^+, y_1^-]$, it follows that this vertex is y_1 , i.e., $y_1 \to C_1$. Because $|N^-(v_2)| \ge 3$, there exists a negative neighbor w of v_2 such that $w \notin \{v_1, v_3\}$. Note that w is not on $C[v_1^+, y_1]$.

It easy to check that D is cycle complementary if $w \in \{s_1, s_2\} \cup V(C[y_2, v_1^-]) \cup V(C[y_1^+, v_3^-])$. Hence w is on $C[v_2^+, y_2^-]$ and thus, D contains the vertex-disjoint cycles

$$C'_1 = s_1 C[y_1^+, v_3] s_2 C[y_2^+, y_1] s_1$$
 and $C'_2 = C[v_2, w] v_2$.

Note that the vertex y_2 can be inserted in C'_1 . Using Lemma 2.1, it follows that there exists a vertex $u \in V(C[w^+, y_2^-])$ such that all vertices of the path $C[u^+, y_2]$ can be inserted in C'_1 and $u \to A := V(C'_1) \cup V(C[u^+, y_2])$. Therefore u^+ has a negative neighbor $z \in A$. Now it is easy to check the cycle complementarity of D.

Subcase 2.3.2.4.3.2: Assume that $s_2 \to s_1$. Since S has no negative neighbor on $C[y_2^+, y_1]$, it follows that $s_2 \to C[y_2^+, y_1]$.

Considering $D - y_1$, it is easy to see that D has an arc v_1v_2 leading from $C[y_2^+, y_1^-]$ to $C[y_1^+, y_2]$. Now we consider the vertex-disjoint cycles

$$C_1 = C[v_2, v_1]v_2$$
 and $C_2 = s_2 C[v_1^+, y_1]x_1^1s_2$

Using Lemma 2.1, it follows that there exists a vertex $v_3 \in V(C[y_1^+, v_2^-]) \cup \{s_1\}$ that dominates $V(C_1) \cup V(C[v_3^+, v_2^-])$.

If $v_3 = s_1$, let w be a negative neighbor of s_2 on $C[y_1^+, y_2^-]$. It follows that

$$s_1 C[w^+, y_2] x_1^1 s_1$$
 and $s_2 C[y_2^+, w] s_2$

are complementary cycles of D.

If $v_3 \neq s_1$, the vertices s_2 and v_3 are adjacent. If D has the arc v_3s_2 , the cycle

 $C^{'} = s_2 C[v_1^+, y_1] s_1 C[y_1^+, v_3] x_1^1 s_2$

and a Hamiltonian cycle of $D[V(C_1) \cup V(C[v_3^+, v_2^-])]$ are complementary cycles of D. Therefore we assume now that D has the arc s_2v_3 . Recall that s_2 has at least three negative neighbors and thus, a negative neighbor $z_2 \neq y_2$. We now consider the possibilities $z_2 \in V(C[v_2, y_2^-])$, $z_2 \in V(C[v_3^+, v_2^-])$ and $z_2 \in V(C[y_1^+, v_3^-])$. In the first two cases we choose $z_2 \in N^-(s_2)$ such that $C[z_2, y_2]$ has maximal length.

Subcase 2.3.2.4.3.2.1: Suppose that $z_2 \in V(C[v_2, y_2^-])$. In this case we consider the vertex-disjoint cycles

$$C_1 = s_1 C[y_1^+, v_3] C[z_2^+, y_2] y_1 x_1^1 s_1$$
 and $C_2 = s_2 C[y_2^+, v_1] C[v_2, z_2] s_2.$

Since $N^{-}(S, C[y_{2}^{+}, y_{1}^{-}]) = \emptyset$, the vertices of the path $C[v_{1}^{+}, y_{1}^{-}]$ can be inserted in C_{1} . If the vertices of $C[v_{3}^{+}, z_{2}^{-}]$ cannot be inserted in C_{2} , there exists a vertex u on $C[v_{3}^{+}, z_{2}^{-}]$ such that $u \to C[u^{+}, v_{1}]$ and $u \to s_{2}$ by Lemma 2.1. In addition, $V(C_{2}) \cup V(C[u^{+}, v_{2}^{-}])$ induces a Hamiltonian subdigraph of D. But then

$$C'_1 = s_1 C[y_1^+, u] x_1^1 s_1$$
 and $C'_2 = s_2 C[y_2^+, v_1] C[v_2, y_2] s_2$

are vertex-disjoint cycles of D such that the vertices of $C[v_1^+, y_1]$ can be inserted in C'_1 and the vertices of $C[u^+, v_2^-]$ can be inserted in C'_2 . It follows that D is cycle complementary.

Subcase 2.3.2.4.3.2.2: Suppose that $z_2 \in V(C[v_3^+, v_2^-])$. We consider the vertex-disjoint cycles

$$C_1 = s_1 C[y_1^+, z_2] x_1^1 s_2 C[v_1^+, y_1] s_1$$
 and $C_2 = v_1 C[v_2, v_1].$

Using Lemma 2.1, the vertices on $C[z_2^+, v_2^-]$ can be inserted in C_2 .

Subcase 2.3.2.4.3.2.3: Suppose that $z_2 \in V(C[y_1^+, v_3^-])$. In this case we choose z_2 such that $z_2 \to s_2 \to C[z_2^+, v_3]$. Then we consider the vertex-disjoint cycles

$$C_1 = s_1 C[y_1^+, z_2] x_1^1 s_1$$
 and $C_2 = s_2 C[y_2^+, v_1] C[v_2, y_2] s_2$.

Note that all vertices of the path $C[z_2^+, v_2^-]$ can be inserted in C_2 by using Lemma 2.1.

Since s_1 has no negative neighbor on $C[v_1^+, y_1]$, it follows that $y_1 \to C[y_1^+, z_2]$. Because $|N^-(z_2^+)| \ge 3$, the vertex z_2^+ has a negative neighbor $v_4 \notin \{s_2, z_2\}$. It is easy to check that D is cycle complementary if $v_4 \in \{s_1\} \cup V(C[y_2, z_2])$. Therefore we may assume that $v_4 \in V(C[z_2^+, y_2^-])$. But then

$$C'_{1} = s_{2}C[v_{1}^{+}, y_{1}]s_{1}C[y_{1}^{+}, z_{2}]s_{2}$$
 and $C'_{2} = v_{4}C[z_{2}^{+}, v_{3}]C[v_{4}^{+}, v_{1}]C[v_{2}, v_{4}]$

are vertex-disjoint cycles in D such that the remaining vertices on $C[v_3^+, v_2^-]$ can be inserted in C_2 . Hence, D is cycle complementary.

Subcase 2.3.2.4.3.3: Assume that $s_1 \to s_2$. It follows that s_1 and y_2 are adjacent.

If $y_2 \to s_1$, the cycles

$$s_1 C[y_1^+, y_2] s_1$$
 and $s_2 C[y_2^+, y_1] x_1^1 s_2$

are complementary in D.

If $s_1 \to C[y_1^+, y_2]$, the vertex s_1 has a negative neighbor on the path $C[y_2^+, y_1^-]$ and thus, D is cycle complementary.

Therefore we may assume that there exists a vertex $z_1 \in V(C[y_1^+, y_2^-])$ such that $z_1 \to s_1 \to C[z_1^+, y_2]$. We choose z_1 such that $C[z_1, y_2]$ has minimal length. Note that z_1 and y_2 are adjacent.

Subcase 2.3.2.4.3.3.1: If $z_1^+ \neq y_2$ and $y_2 \to z_1$, the vertex s_1 has a negative neighbor on the path $C[y_2^+, z_1^-]$ and thus, D is cycle complementary.

Subcase 2.3.2.4.3.3.2: If $z_1^+ \neq y_2$ and $z_1 \rightarrow y_2$, we are in Subcase 2.3.2.4.3.2 which we have already solved.

Subcase 2.3.2.4.3.3.3: Assume that $z_1^+ = y_2$. Note that y_1^+ has a negative neighbor w besides s_1 and y_1 .

If $w \notin V(C[y_1^+, z_1])$, it is easy to check that D has complementary cycles.

If $w \in V(C[y_1^+, z_1])$, the vertex-disjoint cycles

 $C_1 = s_1 y_2 s_2 C[y_2^+, y_1] x_1^1 s_1$ and $C_2 = C[y_1^+, w] y_1^+$

contain all vertices of D except $V(C[w^+, z_1])$. Note that if $z_1 \to C_1$, the digraph D is cycle complementary. By Lemma 2.1 there exists a vertex u on $C[w^+, z_1^-]$ such that the vertices of $C[u^+, z_1]$ can be inserted in C_2 (resulting in an extended cycle C'_2) and $u \to C'_2$. It follows particularly that the vertex u^+ has a negative neighbor on C'_2 . Now it is easy to check that D is cycle complementary.

For the opposite direction it is immediate that a 2-connected, 2-regular in-tournament with 2m+1 $(m \ge 4)$ vertices is not cycle complementary.

References

- J. Bang-Jensen: Locally semicomplete digraphs: a generalization of tournaments, J. Graph Theory 14 (1990), 371–390.
- [2] J. Bang-Jensen: On the structure of locally semicomplete digraphs, Discrete Math. 100 (1992), 243-265.
- [3] J. Bang-Jensen, Y. Guo and A. Yeo: Complementary cycles containing prescribed vertices in tournaments, *Discrete Math.* 214 (2000), 77–87.
- [4] J. Bang-Jensen and G. Gutin: Generalizations of tournaments: a survey, J. Graph Theory 28 (1998), 171–202.

- [5] J. Bang-Jensen and G. Gutin: Digraphs: Theory, Algorithms and Applications, Springer, London (2000).
- [6] J. Bang-Jensen, J. Huang and E. Prisner: In-tournament digraphs, J. Combin. Theory Ser. B 59 (1993), 267–287.
- [7] J.A. Bondy and U.S.R. Murty: Graph Theory with Applications, The Macmillan Press Ltd., London Basingstoke (1976).
- [8] P. Camion: Chemis et circuits hamiltoniens des graphes complets, C.R. Acad. Sci. Paris 249 (1959), 2151–2152.
- [9] G. Chen, R.J. Gould and H. Li: Partitioning vertices of a tournament into independent cycles, J. Combin. Theory Ser. B 53 (2001), 213–220.
- [10] R.J. Gould and Y. Guo: Locally semicomplete digraphs with a factor composed of k cycles, J. Korean Math. Soc. 41 (2004), 895–912.
- [11] Y. Guo: Locally Semicomplete Digraphs, Ph.D. thesis, RWTH Aachen, Aachener Beiträge zur Mathematik 13 (1995), 92 pp.
- [12] Y. Guo and L. Volkmann: On complementary cycles in locally semicomplete digraphs, Discrete Math. 135 (1994), 121–127.
- [13] Y. Guo and L. Volkmann: Locally semicomplete digraphs that are complementary mpancyclic, J. Graph Theory 21 (1996), 121–136.
- [14] J. Huang: Tournament-Like Oriented Graphs, Ph.D. thesis, Simon Fraser University (1992).
- [15] K. Menger: Zur allgemeinen Kurventheorie, Fund. Math. 10 (1927), 96–115.
- [16] C. Peters and L. Volkmann: Vertex 6-pancyclic in-tournaments, Discrete Math. 285 (2004), no. 1-3, 227–238.
- [17] K.B. Reid: Two complementary circuits in two-connected tournaments, in: Alspach and Godsil, eds., Cycles in Graphs, Annals of Discrete Mathematics 27 (1985), 312–334.
- [18] Z.M. Song: Complementary cycles of all lengths in tournaments, J. Combin. Theory Ser. B 57 (1993), 18–25.
- [19] M. Tewes: Pancyclic in-tournaments, Discrete Math. 233 (2001), 193–204.
- [20] M. Tewes: Pancyclic orderings of in-tournaments, Discrete Appl. Math. 120 (2002), 243–249.
- [21] M. Tewes and L. Volkmann: On the cycle structure of in-tournaments, Australas. J. Combin. 18 (1998), 293–301.
- [22] M. Tewes and L. Volkmann: Vertex-pancyclic in-tournaments, J. Graph Theory 26 (2001), 84–104.
- [23] H. Whitney: Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150–168.