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Abstract

An in-tournament is an oriented graph such that the negative neighborhood of every vertex
induces a tournament. A digraph D is cycle complementary if there exist two vertex-disjoint
directed cycles spanning the vertex set of D. Let D be a 2-connected in-tournament of order
at least 8. In this paper we show that D is not cycle complementary if and only if it is
2-regular and has odd order.
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1 Introduction

In 1990, Bang-Jensen [1] defined local tournaments to be the family of oriented graphs, i.e. digraphs
without loops, multiple arcs and cycles of length 2, where the positive as well as the negative
neighborhood of every vertex induces a tournament. In transfering the general adjacency only to
vertices that have a common negative or a common positive neighbor, local tournaments form an
interesting generalization of tournaments. Since then a lot of research has been done concerning
local tournaments, or the more general class of locally semicomplete digraphs, where there might be
cycles of length 2. In particular, the Ph.D. theses of Guo [11] and Huang [14] handeled this subject
in detail. For more information concerning different generalizations of tournaments, the reader
may be refered to the survey article of Bang-Jensen and Gutin [4]. In claiming adjacency only for
vertices that have a common positive neighbor, local tournaments can be further generalized to
the class of in-tournaments. An oriented graph D is called in-tournament if the set of negative
neighbors of each vertex of D induces a tournament. Some problems concerning in-tournaments
have been studied by Bang-Jensen, Huang and Prisner [6]. For information about the cycle
structure of in-tournaments see, for example, Peters and Volkmann [16], Tewes [19], [20] or Tewes
and Volkmann [21], [22].

Throughout this paper, cycles and paths are directed cycles and directed paths. Two subdigraphs
of a digraph D are called complementary if they are disjoint and span the vertex set of D. A
digraph is called cycle complementary if it has two complementary cycles. The general problem
of partitioning a highly connected tournament into two subtournaments of high connectivity was
mentioned by Thomassen (see Reid [17]). The first step towards the solution of this problem was
made by Reid [17] in 1985 by the following result.

Theorem 1.1 (Reid [17] 1985). Let T be a 2-connected tournament on n > 6 vertices. Then T
contains two verter-disjoint cycles of lengths 3 and n — 3 unless T is isomorphic to T3, where T#
s the 3-reqular tournament presented in Fig. 1.

This result is stronger in the way that one of the strongly connected subtournaments can be
specified to be a 3-cycle. For extensions, supplements and generalizations of Theorem 1.1 see, for
example, Song [18], Guo and Volkmann [13], Bang-Jensen, Guo and Yeo [3], Chen, Gould and Li
[9] and Gould and Guo [10].

An obvious necessary condition for a digraph D of order n to contain two complementary cycles is
that the girth of D is at most n/2. In [2], Bang-Jensen observed that the second power C§k+1 of an
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Fig. 1: Three 2-connected local tournaments that are not cycle complementary.

odd cycle has girth k + 1 and that the 2-regular digraph C3, 41 18 a 2-connected local tournament.
This shows that Theorem 1.1 cannot be extended to local tournaments in general. Confirming
two conjectures by Bang-Jensen [2], Guo and Volkmann [12] proved that the second power of odd
cycles are the only exceptions when n > 8.

Theorem 1.2 (Guo & Volkmann [12] 1994). Let D be a 2-connected local tournament on n > 6
vertices. Then D has two complementary cycles if and only if D is not the second power of an
odd cycle and D is not a member of {T#, T2, Ts}, where T+, T? and Ty are presented in Fig. 1.

In this paper we will show that Theorem 1.2 remains valid for the superclass of in-tournaments.
The proof is much more difficult than the one of Theorem 1.2, since the structural properties of
in-tournaments are not as strong as these of local tournaments.

2 Terminology and preliminary results

We assume that the reader is familiar with the basic concepts of graph theory and we refer to the
comprehensive books by Bondy and Murty [7] or by Bang-Jensen and Gutin [5] for information
which are not given here.

All digraphs mentioned in this paper are finite without loops and multiple arcs. For a digraph
D we denote by V(D) and E(D) the vertex set and arc set of D, respectively. The subdigraph
induced by a subset A of V(D) is denoted by D[A]. A cycle with the vertices x1,x2, ...,z and
the arcs 122, x2T3,..., T2y is called a k-cycle and is denoted by xizs...zpx1. If we consider
a k-cycle C' = z125 ... 221 in a digraph D, all subscripts appearing in related calculations are
taken modulo the cycle length k& (note that xy = xy). Let C[z;, z;], where 1 <4, j < k, denote the
subpath x;x;11 ...x; of C with initial vertex z; and terminal vertex x;. If = is a vertex of C, the
successor (predecessor) of z on C' is denoted by z¢, (z5), and if no confusion arises, 2+ and 2~
will be used instead of xg and z, respectively. The notations for paths are defined analogously.

If 2y € E(D), we say that & dominates y. If A and B are two disjoint subdigraphs of a digraph
D such that every vertex of A dominates every vertex of B, we say that A dominates B, denoted
by A — B. Furthermore, A ~ B denotes the fact that there is no arc leading from B to A and
at least one arc leading from A to B. In this case we also say that A weakly dominates B. The
outset (inset) N1 (z) (N~ (z)) of a vertex z is the set of positive (negative) neighbors of z. More
generally, for arbitrary subdigraphs A and B of D, the outset N1 (A, B) is the set of vertices in B
to which there is an arc from a vertex in A, and the inset N~ (A, B) is defined analogously. The
numbers |[NT(x)| and [N~ (z)| are called outdegree and indegree of x, respectively. We say that a
digraph D is k-regular if [NT(z)| = [N~ (z)| = k for every vertex = of D.

If D is a strong digraph and S is a subset of V(D) such that D — S is not strong, we say that S
is a separating set. A separating set S is called minimal separating set (minimum separating set)
if there exists no separating set U such that U C S and U # S (|U] < |5]).



The first result is a simple, but powerful observation on the interaction of a cycle and an external
vertex.

Lemma 2.1. Let D be an in-tournament containing a cycle C' = uius ... usuq .

(a) If there exists a vertex x € V(D) — V(C) such that d*(z,C) > 0, either x — C or u; — x —
uiy1 for some 1 <i <t.

(b) If P =v1vs ... 05 is a path in D —V(C) such that d*(vs, C) > 0, either there exists an integer
1 <4 < s such that v; — C, v; — Plvit1,vs] and D has a cycle that consists of all vertices of
C' and Plviy1,vs] or D contains a Hamiltonian cycle of D[V (C) UV (P)].

Proof. (a) Without loss of generality, let © — wu;. Assume that 2 does not dominate C'. Obviously,
x and u;_1 are negative neighbors of the vertex u; and hence, since D is an in-tournament, they
are adjacent. If us—1 — x, we choose i = ¢ — 1 and are done. Otherwise x — u;_1 which implies
the adjacency of the vertices u;—o and z. Since x does not dominate C', we obtain 4 in at most
t — 1 steps.

(b) Using the first part of this lemma, we conclude that either vs; — C' or there exists an integer
1 < j <t such that u; — vs — uj41. If vs — C, we choose ¢ = s and are done. Otherwise note
that we can extend the cycle C' by the vertex v, to a cycle C" and that d* (Vs=1, C/) > 0. Using
these observations we obtain 7 in at most s steps. O

Camion [8] proved in 1959 that a tournament is Hamiltonian if and only if it is strong. In 1993,
Bang-Jensen, Huang and Prisner [6] extended this result to in-tournaments.

Theorem 2.2 (Bang-Jensen, Huang & Prisner [6] 1993). An in-tournament is Hamiltonian if
and only if it is strong.

The previous results are useful for the analyzation of the structural properties of in-tournaments.

Theorem 2.3 (Bang-Jensen, Huang & Prisner [6] 1993). Let D be a strong in-tournament and
let S be a minimal separating set of D.

(a) If A and B are two distinct strong components of D — S, either there is no arc between them
or A weakly dominates B or B weakly dominates A. Furthermore, if A weakly dominates B,
the set N~ (B, A) dominates B.

(b) If A and B are two distinct strong components of D — S such that A weakly dominates B, the
set N~ (b, A) induces a tournament for each b € B.

(c) The strong components of D — S can be ordered in a unique way D1, Do, ..., D, such that
there are no arcs from D; to D; for j > i, and D; has an arc to Dy fori=1,2,...,p—1.

According to Theorem 2.3, we give the following definition.

Definition 2.4. The unique labelling D1, Ds, ..., D, of the strong components of D — S as de-
scribed in Theorem 2.3 is called the strong decomposition of D — S. We call Dy the initial and
D,, the terminal component.

The following results are immediate by Theorem 2.3.

Corollary 2.5 (Bang-Jensen, Huang & Prisner [6] 1993). Let D be a strong in-tournament and
let S be a minimal separating set of D. The strong decomposition of D — S has the following
properties.



(a) If z; — xy for x; € V(D;) and x, € V(Dy) with 1 < i # k < p, then z; — D, for every
1+1<j<k.

(b) The digraph D — S has a Hamiltonian path.
(¢c) For every s € S we have d*(s,D1) > 0 and d~ (s, Dp) > 0.

From the fact that every connected non-strong in-tournament has a unique strong decomposition,
we can find a further useful decomposition. This result plays an important role in our proof.

Theorem 2.6 (Structure Theorem). Let D be a strong in-tournament and let S be a minimal
separating set of D. There is a unique order Dy, D, ..., D, with r > 2 of the strong components
of D — S such that

(a) Dj is the terminal component of D — S and D) consists of some strong components of D for
i>9;

(b) there exists a vertex x in the initial component of Dj 4 and a vertex y in the terminal compo-
nent of Dj, | such that {x,y} dominates the initial component of D; fori=1,2,...,r —1;

(c) there are no arcs between Dj and D’ for i, j satisfying |i = j| > 2;

(d) if r > 3, there exist no arcs from D} to S for i >3, S — Dy and S induces a tournament in
D.

Proof. Let D1, Do, ..., D, be the strong decompostion of D —S. We define (see Fig. 2)
D)= Dy, M =p,

Negs =min {j | N¥(D;, D)) #0}

and

’

Di+1 =D |:VY(DA UV(D)\i+1+1)U---UV(D)\i—l)} .

i4+1 )
So we have a new decomposition D}, D}, ..., D!, where 2 <r < p, of D that satisfies (a).

By the definition of D} ,, there exists a strong component D; of Dj such that N*(Dy,,,, D;) # 0.
Therefore we conclude from Corollary 2.5 (a) that there exists a vertex x € V(D,,,,) such that
x — Dj for each j € {A\iy1,.:.,l}. From Theorem 2.3 (c) and Corollary 2.5, it follows that there
exists a vertex y € V(Dy,_1) such that y — D,,. So (b) has been proved.

Note that if r = 2, there is nothing to prove in (c). If » > 3 and ¢, j are two integers with i > j+2,
there is no arc from D; to D’ by the definition of A;_;. In addition, D contains no arc from D’
to D} by Theorem 2.3 (c).

Assume to the contrary that there is an arc xs from « € V(D)) to s € S, where ¢ > 3. Note that
Corollary 2.5 (c) states that s has a negative neighbor z’ in D,,. Since D is an in-tournament, it
follows that z and ' are adjacent, a contradiction to (c).

Now we shall prove that S — D;. Note that we have d* (s, D1) > 0 for every vertex s € S by
Corollary 2.5 (b). Now let s € S be an arbitrary vertex. If D; consists of a single vertex, there is
nothing to prove. Otherwise D; has a Hamiltonian cycle by Theorem 2.2. Using Lemma 2.1 (a),
we deduce that either s — D; or that s has a negative neighbor in D;. Thus, if s /4 D, the
vertex s has negative neighbors both in Dy and D,, a contradiction to (c¢). This completes the
proof of this theorem. O
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Fig. 2: The decomposition of a strong in-tournament.

3 Main Results

In this paper we shall give the following complete characterization of 2-connected in-tournaments
which are cycle complementary.

Theorem 3.1 (Main Theorem). Let D be a 2-connected in-tournament on n > 6 vertices that is
not a member of {T+, T# Ts} as presented in Fig. 1. Then D is not cycle complementary if and
only if D is 2-reqular and |V (D)| is odd.

Proof of Main Theorem

We shall prove Theorem 3.1 for n > 8. For n = 6 and n = 7 it is straightforward to verify the
desired result by means of a case by case analysis.

Suppose that D is k-connected, but not (k 4+ 1)-connected (k > 2). Then D has a separating set
S of size k. According to Corollary 2.5 (b) and Theorem 2.6, the digraph D — S is connected and
we have a new order Dy, D,,..., D, , where 2 < r < p, of the strong components D1, Ds, ..., D,

of D — S such that there are only arcs from D;H to D; fori=1,2,...,7r—1.

Note that the k-connectivity of D implies that each subdigraph D;, where 2 <4 < r — 1, contains
at least k vertices. Furthermore, we may assume, without loss of generality, that every vertex of
S — 51 has at least two positive neighbors in D — S.

Claim. If Y22 * [V(Dj)| > 2, we have |V (D;)| =1 for each i < Ag.

j=1

Proof. Assume that |V (D;)| > 3 for an index i < Ay. Let

)\271
A= ] V(D).
j=1

Since D is 2-connected, we have [N~ (D;, A)| > 2 which implies that D contains two distinct
vertices v1,v2 € A that dominate D;. By a well-known result due to Menger [15] and Whitney



[23], we obtain two vertex-disjoint paths leading from D; to {v1,v2} and therefore, by adding the
appropriate arcs from {v1,v2} to D;, two vertex-disjoint cycles Cq,Cy in D. We choose C; and
C5 such that |V(C1) UV(Cy)| is maximal. We will now show that V(Cy) UV (Cs) = V(D) which
is a contradiction to our assumption that D is not cycle complementary.

Let u ¢ V(C1) UV(C3) be an arbitrary vertex that has a positive neighbor in V/(C1) UV (Cy), say
N7T(u,Cy) # 0. By Lemma 2.1 and the maximality of the cycles, it follows that u — C;. Note
that each of the two cycles contains at least one vertex of A, one vertex of D; and one vertex of
S. This implies that u has positive neighbors both in D; and S. With the help of Theorem 2.6
we conclude that u € S.

By the observations above we conclude that V(D) — S C V(C;) U V(C2). Note that each vertex
s € S dominates D by Theorem 2.6. It follows that each vertex s € S has a positive neighbor on
C; or Cy. In addition, if s € S — (V(C1) UV (C2)) has a positive neighbor on C;, where j € {1, 2},
the vertex s dominstes C; and thus, N* (s, D;) # (. It follows that s — A by Theorem 2.6. The
latter implies that s has positive neighbors on both cycles. Since C; and Cy were chosen maximal,
we conclude that s — C] and s — C3 and thus, s — D — S, a contradiction to Corollary 2.5. This
completes the proof of this claim. O

Suppose that D is not cycle complementary. We shall show below that then D is 2-regular and
|[V(D)| is odd. We consider two cases, depending on the value of r.

Case 1: Let r > 3. By Theorem 2.6, there exist no arcs from D} to S for i > 3, S — D; and S
induces a tournament. In addition, if k& > 4, the tournament D[S] is transitive, since otherwise an
arbitrary 3-cycle Cs of D[S] and a Hamiltonian cycle of D — Cg are complementary cycles of D.
Let $152...5s, be a Hamiltonian path of D[S]. Note that s; has at least two positive neighbors
outside of S. By the claim above we have |V(D;)| =1 for each i < Xs.

of D’ such that z] —
xf for each [ > 1. In addition, if w{xé . xfw is a Hamiltonian path of D’ and N

Note that for 3 < j < r there exists an unique Hamiltonian path le zé cooxd
J

j—1
R A
/.

j .
=1 and z/,  dominates

is a Hamiltonian path of D where 7 > 2, the vertex ,7:]1 dominates Dy, _, ;

Jj—1
$2 .

Subcase 1.1: Suppose that |V (D,)| > 3. Let C be a Hamiltonian cycle of D,, and let 21, z2 € V(D,,)
be two vertices such that z; — s1 and z9 — s;. Then

r,.r=1 2 +
Sp—1xqx] oo xiClzy , z1]8182 - . Sk—1

and

r_r r r—1_r—1 r—1 2 2 2 —+
SKTHTZ ... Ty, Ty Ty ...y .50y ... 2, Oz, 20)sk

are complementary cycles in D.
Subcase 1.2: Suppose that |[V(D,)] = 1. Note that in this case N*(D,_1,5) # 0. Let v €

V(Dp—1) be a vertex that has a positive neighbor in S. Then either v — s; for an index i # k or
Sg—1 — v — 8. In the latter case si_1 has a negative neighbor u # v in Dj.

Subcase 1.2.1: Suppose that [V (D.)| > 2. Then s — a5 and sp_; — 7.

Subcase 1.2.1.1: Suppose that |V(D;)| > 3 for an index 2 < j <r. If 22 — s;, where i # k, the
cycles

_ ror—1 Jog d-1,3-1 j—1 2, 2 2 .
C1 = sp12yay ... 9@, @y @y Ty XX T, SiSiq - - Skl
and
— T T r J+1,5+1 J+1 9.9 J Jj—1,5-2 1
Cy = spaoxy ... Ty, .. Ty Ty . Ty ApTg.. Ty X)X TSk

are vertex-disjoint. If ¢ = 1, the cycles C; and Cs are complementary in D. If ¢ > 2 and D[S] is
transitive, the path s1ss...s;—1 can be inserted in Cy. Otherwise we have k = 3, i = 2 and D[S]



induces the 3-cycle s1s283s1 in D. If s /& C1, the vertex s; can be inserted in C;. Otherwise
s1 — C7 and it follows that s; — z5. But then

ror—1 jog =1 i—1 j—1 2,2 2
S2S3LTTY . T{LY, XY TR T XL T 82
and
T T J+1_5+1 g B ) J J—1,_75-2 1
SITHTY ... Ty ... Ty Ty T THTF Ty T T ... TqS1

are complementary cycles of D.
If there exists no arc sz s; in D such that i # k, we obtain sx_1 — sz — s3.. In this case

r 2,2 2

r r—1 1 .
Sp—1T1x]  ...x18182...5k—1 and SkToly ... Ty ... Tox3 ... Ty, Sk

show that D is cycle complementary.

Subcase 1.2.1.2: Suppose that D; is a 1-path for each 2 < j < r. Note that we have k = 2 in this
case. If D is not 2-regular, at least one of the following possibilities holds. The digraph D has an
arc

(i) s1z, where z € V(D) — {s2,a7,23,x1} or
(ii) s2z, where z € V(D) — {af, 25,21, 51} or
(iii) x{zéfl, where j € {3,4,...,r} or
(iv) x%s, where s € S or
(v) x3ss.
But each such arc yields a contradiction to the fact that D is not cycle complementary which
means that D is 2-regular.
Subcase 1.2.2: Suppose that |V (D,)| = 1.
Subcase 1.2.2.1: Suppose that r > 4. Then s, — {z}, 277"} and s;_; — 7.

Subcase 1.2.2.1.1: Suppose that |V(D;)| >3foranindex 2 < j <r—1. Ifa2 — s;, wherei# k,
the cycles
C) = sk_lx{x’;lxg*l T A x%x% 8 xiZSiSiJ,_l ...8x—1 and Cy = skx’fleQ . J]%Sk

FNe 1

are vertex-disjoint. If ¢ = 1, the cycles C; and Cy are complementary in D. If i > 2 and DI[S] is
transitive, the path s1s2...s;_1 can be inserted in C3. Otherwise we have k = 3, i = 2 and D[S]
induces the 3-cycle 1828381 in D. If s 4 C1, the vertex s; can be inserted in C;. Otherwise
s1 — C7 and it follows that s; — xI_l. But then

rr—1_r—1 r—1 2,2 2 r—1,r—2 1
S201Ty Ty e Xy e XX T, 52 and 83811 X4 ... L7183

are complementary cycles of D.

If there exists no arc 22_s; in D such that i # k, then we obtain sy_1 — x2_ — sj. In this case

ror—1_r—1 r—1 Jj+1_j+1 j+1 .0 .0 J Jj—1 1
Sk—1TITY Ty ...y ...y Xy T TpTy Ty T ... T{S182- .. Skl
and
r—1,r—2 Jog o d—1,.0-1 j—1 2,2 2
SKTY Ty ...TYT Ty Ty Ty TRT Ty, Sk

show that D is cycle complementary.

Subcase 1.2.2.1.2: Suppose that D;- is a 1-path for each 2 < j < r — 1. Note that we have k = 2

in this case. We consider the vertex z3.



If 22 — 51, the cycles

siotah tah T2 xdsy and sox T2 xls;

are complementary in D.
Otherwise s; — x5 — s3. By Theorem 2.6 it follows that s; — D — {z},23}. Therefore

slelx’f? .. .x}sl and 52,7:{,7:’2”7190372 .. 1;352

show that D is cycle complementary.

Subcase 1.2.2.2: Suppose that r = 3. Note that Dy has at least k — 1 negative neighbors in S and
D,_1 has at least k — 1 positive neighbors in S.

Subcase 1.2.2.2.1: Suppose that p > 4.

If there exists a vertex s € S such that s € N*(D,_1) NN~ (D), it is easy to see that there exists
a subset A of Dy (where A # V(Ds) if |[V(D32)| > 3) and a subset B of D,,—1 (where B # V(Dp_1)
if |V(Dp—1)| > 3) such that the digraphs

H:=D[{s}UAUB] and D -V (H)

are both strong.

If NT(Dp_1) NN~ (D3) =0, we conclude that k = 2. We may assume, without loss of generality,
that s; — so and N (s1,D2) = N~ (s2, Dp_1) = 0.

If s — Dy, there exists a subset X of Dy (where X # V(Dy) if |V (D3)| > 3) such that
H := D[{s9,2;}UX] and D — V(H)

are both strong.
If so /> Ds, there exists a subset A of Dy (where A # V(D3) if |V (D2)| > 3) and a subset B of
D,y (where B # V(Dp_1) if |[V(Dp—1)| > 3) such that the digraphs

H := D[{s1,23}UAUB] and D—V(H)

are both strong.
Subcase 1.2.2.2.2: Suppose that p = 3.

If [V(D2)| > 4, we consider the positive and the negative neighborhood of Dy. The assumption
that there exists a vertex s € S such that Nt (Ds, S) = S—s = N~ (D, S) leads to a contradiction,
since D is a k-connected in-tournament with & > 2. Thus, S contains distinct vertices s; # so
such that S — sy € NT (D), S—s1 C N7(Ds3) and s; — s3. Let C be a Hamiltonian cycle of Ds.

If s — Do, note that there are two distinct vertices z; # 29 in Ds such that z; — s; and 29 — z%
But then
SQC[zfr, 22]30}52 and slxi’C[z;, z1]81

are complementary cycles of D.

If so 4 Da, there exists a vertex zo € V(D3) such that zo — sy — z;' Thus s7 and z9 are
adjacent.

If z5 — s1, note that there exists a vertex z; # z9 in Dy such that z; — x% Now
59C [z, z1]xt and s123C[2], 2]

are complementary cycles of D.

If s1 — 29, there exists a vertex z; in Dy such that z; — s; — zf



If 2" # 22, we consider the vertex set A := V(C[z]", z;]). Since D is strong, we have NT(A4) — A #
(. If A > a — s9, the cycles

s913C[2, alsy and s1Ca™, z1]21s;
are complementary in D. If A3 a — 21, the cycles
5913 O, alzysy and s1C[at, z1]s;
show that D is cycle complementary. Finally, if A > a — b € V(D3) — A, the cycles
Cy = 510z, a)Cb, zl]x%sl and Cy = 82$§C[a+,22]52

are vertex-disjoint. By Lemma 2.1 each vertex v of C[z5,b”] can either be inserted in C; or
dominates C;. Obviously D is cycle complementary in the first case. In the latter case let v be a
vertex of C[z5,b7] such that v — V(C1) UV(CvT,b7]) and |V(C[v*,b7])| is minimal. But then
the sets

{s9,23, 21y UV (Cla*t,v]) and {s:}UV(Clvt,a])

both induce strong in-tournaments in D. Theorem 2.2 implies that D is cycle complementary.

If 27 = 25, we shall show in the first step that N~ (s1) = {z1,z}} and N*(s1) = {s2, 23, 2, }. If
v # z1 is a negative neighbor of s; in Ds, the cycles

51C[2],v]s1 and seziC[vT, 21]2]

are complementary in D. We may assume now that N7 (s1, Do) = {z1}. If w # 27" is a positive
neighbor of s; in D, our assumption implies that s; — z; and thus,

51C[23F,21)s1 and  sp@dzpaiso

are complementary cycles of D. Now note that N*(s1) = {s2,23, 2, } is a minimal separating set
of D. Let Ay, Ay, ..., Ay be the strong decomposition and A}, A, ..., A; be the decomposition
according to Theorem 2.6 of D — {s2, 2%, 2" }. Then V(4,) = {s1}, V(4,-1) = {x1} and ¢q > 4.
If z; ¢ V(A1), we obtain t > 3 and ¢ > 4. This case is already solved. Otherwise z; € V(A1) and
t = 2. Note that 23 — A{ and that )" has a positive neighbor in A; by Theorem 2.6. Therefore
both

q—2
{s1,20 UV (A1) and {sy,27,21} U | J V(4))
i=2
induce strong in-tournaments in D and thus, D is cycle complementary by Theorem 2.2.

If |V(D3)| = 3, we obtain k = 3 and |V (D)| = 8. Since |[NT(S)|,|NT(D2)| > k = 3, there exist
two non-incident arcs leading from Dj to S and two non-incident arcs leading from S to Dy. Now
it is easy to check that D is cycle complementary.

Case 2: Let r = 2 (see Fig. 3). Note that N~ (D) =S = Nt(D,) and d* (s;, D1), d” (s, Dp) > 1
for every i € {1,2,...,k} (see Corollary 2.5 (c)). If we consider a strong component D;, all
predecessors and successors refer to the corresponding Hamiltonian cycle of D;, unless stated
otherwise. Furthermore, we may assume that r = 2 for any separating set S of size k. Now we
consider three subcases depending on the value of k.

Subcase 2.1: Suppose that k > 4. Note that D; contains a vertex that dominates D, and that every
vertex s € S has at least one negative neighbor in D,,. It follows that if |V (D1)| =1 or S contains
a vertex that dominates D, the digraph D has a 3-cycle C. Since D is at least 4-connected, the
remaining digraph D — V(C) is strong and hence, in view of Theorem 2.2, Hamiltonian. It follows
that D is cycle complementary.

Therefore we may assume that |V (D;)| > 3 and that for every vertex s; € S, there exists a vertex
yi € V(Dy) such that y; — s; — y;7.



Subcase 2.1.1: Suppose that |V (D,)| > 3.

Assume that p = 2. Since each vertex of S has a positive as well as a negative neighbor in Dy,
it is possible to insert every vertex of S in a Hamiltonian cycle of D;. This extended cycle and a
Hamiltonian cycle of Dy are complementary cycles of D.

Therefore we may now assume that p > 3. Let C' be a Hamiltonian cycle of D;. If, without loss
of generality, y1 # y2, there exist complementary paths P, and P, of D, such that the terminal
vertex of P; dominates s; and the terminal vertex of P, dominates so. It follows that

Cl = le[yf,yg]Plsl and Cg = SgC[y;r,yl]Dng . Dp_1P282

are vertex-disjoint cycles in D. We show next that all vertices s,,,, where m > 3, can be inserted
in at least one of these cycles. Note that the vertex s,, has a positive neighbor y € V(D). If,
without loss of generality, y € V(Cy), the vertex s,, can be inserted in Cy unless s,, — C. Let
P, and P, be complementary paths of D, such that the terminal vertex of P dominates s, and
the terminal vertex of P, dominates s,,. Then

Smslc[yi7 yQ]PmSm and SQC[y;7 yl]D2D3 s Dp—1P252

are vertex-disjoint cycles in D such that s, € V(C1).

Fig. 3: The structure of D in Case 2.

Hence we may assume that y; = y; for all 4,5 € {1,2,...,k}, which implies that there exists a
vertex y € V(Dy) such that S — y. Note that S is a transitive tournament (otherwise S contains a
3-cycle and we are done). Let P = s152...s; be the unique Hamiltonian path of S. Since y; = y;
for all 4,5 and S — y, we have (S —s1) — yT. It follows that D contains two vertex-disjoint paths
from {y,y"} to {sk—1, sk} and thus, we obtain two vertex-disjoint cycles C;, Cy in D by adding
the appropriate arcs from {sx_1, s} to {y,y"}. Note that each of the cycles C; and Cy contains
at least one vertex of D; and one vertex of S. Using Lemma 2.1, we can show that the remaining
vertices in Dy, Dp_1,..., Dy can be inserted in at least one of these cycles. It remains to show the
same for the vertices of Dy and S.

At first we consider the set S. Note that s; — s; for ¢ < j and that s and si—; have k and k — 1
positive neighbors in Dy, respectively. In addition, recall that N~ (s, D,) # () for all s € S. Using
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these observations and Lemma 2.1, all vertices of S — {sx—_1, sk} can be inserted in at least one of
the cycles.

Now consider the set D;. Assume that we have already inserted as much vertices as possible
in C; and Cy. Let C' be a Hamiltonian cycle of D; and let Clv,w] be a path in D; such that
V(Clv,w]) NV(C;) = 0 for s = 1,2. Without loss of generality, w has a positive neighbor on Cj.

If s, € V(Cy) (and sg—1 € V(C3)), we deduce that w and s are adjacent for every vertex s € S,
since (S—sy) — sg. Because of the maximality assumption for |[V(Cy) U V(Cs)|, we also know that
w — (SNV(Ch)). If there exists a vertex s € (SNV (C2)) that dominates w, the digraph D contains
a 3-cycle and thus, is cycle complementary. It follows that w — S and hence w — (V(C1)UV (Cy)).
But this implies that the path C[v,w] can be inserted in Cs, a contradiction.

Otherwise sp_1 € V(C1) (and s, € V(C2)). Note that w particularly dominates V(Cy) NV (D).
Furthermore, the set N T (s, D1) N V(Cy) is not empty and hence, w and sy are adjacent. Now
the same argumentation as above yields a contradiction.

Subcase 2.1.2: Suppose that |V (D,)| = 1. The case that p > 3 can be solved analogously to
Subcase 2.1.1. Therefore it remains to check the case that p = 2. Let C' be a Hamiltonian cycle
of Dl.

Subcase 2.1.2.1: Suppose there exist two indices i # j such that y; # y; and s; — s;. Then we
consider y;r and y;r If y;r =y, or y;r = y;, the digraph D has a 3-cycle and it is immediate that
D is cycle complementary. Otherwise note that s; and y; are adjacent. Therefore either s; — y;
and s;y;z1s; is a 3-cycle in D or y; — s; and

Cy = 5:Clyf,y;lsi and Co = s;Clyf, yilays,

are vertex-disjoint cycles in D such that V(D) = (V(C1) UV (C3)) = S — {si,s;}. Now we can
show analogously to Subcase 2.1.1 that D is cycle complementary.

Subcase 2.1.2.2: Suppose there exist two integers i # j such that y; = y; and y; = y;r and neither
s; nor s; can be inserted at another position of the Hamiltonian cycle C' of D;. Then, following
Subcase 2.1.1 (|[V(Dp)| >3, p > 3 and y; = y; for all 4,5 € {1,2,...,k}), we see that D has
complementary cycles.

Subcase 2.1.2.3: Suppose that |{y1,v2,...,yx}| =k and E(DI[S]) = 0.

If y;” = y; for some 4,5 € {1,2,...,k}, the digraph D has a 3-cycle and we are done. Otherwise,
since k > 4, there exist vertices s; # s; in S such that 2} has a negative neighbor v; # y; on
Cly;, y]_] and a negative neighbor vy 7# yj"r on C [y;r, y; ]. Furthermore, we may assume, without
loss of generality, that y; — y; and thus,

Oy = s;Cfyf, v]zys; and Cp = st[yj,yi]yjsj

are vertex-disjoint cycles in D. Consider the vertices on C[v]",y;]. Using Lemma 2.1, it follows
that all these vertices can be inserted in Cy unless there exists a vertex u € V(C[v;,y;]) with the
following properties: D contains a Hamiltonian cycle Cy of V(Cy) UV (Clu™,y7]) and u — Cy. It
follows that Cy and C) = s;C[y;", ulxls; are vertex-disjoint cycles in D that contain all vertices
of D except S — {s;,s;}. Now let m ¢ {i,j}. Since z] — s,, and z{ € V(C}), the vertex s, can
be inserted in C; if Nt (s,,,C1) # 0. Therefore we may assume that s,, has a positive neighbor
on Cy and thus, s,, can be inserted in C, unless s,, — Cy. But the latter implies that s, and s;
are adjacent, a contradiction.

Subcase 2.2: Suppose that k = 3. First we show that the digraph D has a separating set S =
{51, 82, 83} such that s1s2s381 is a 3-cycle in D. For this it suffices to show that D contains a 3-
cycle. Following the proof of Subcase 2.1, in all cases except the last we either find a separating set
S of D which has the appropriate condition or we see that D is cycle complementary. It remains
to check Subcase 2.1.2.3 (p = 2, |[V(D1)| > 3, |[V(D2)| = 1, [{y1,y2,y3}| = 3 and E(DI[S]) = 0). In
addition, we may assume that y;r #y, for all 4,5 € {1,2,3}. Now we consider the vertices y1, yo
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and y3. Since y; € N~ (x1) for each i € {1,2,3}, the subdigraph D[{y1,y2,y3}] is a tournament.
We may assume, without loss of generality, that y; — y2. If y3 is on C[y;", y2], we can show that
D is cycle complementary following the proof in Subcase 2.1.2.3. Therefore we may assume that
y3 is a vertex of the path C[yy , y1]. Analogously we deduce that D has the arcs y3y; and yay3 and
thus, D contains the 3-cycle y1y2ysy1. Hence, we may assume that S = {s1, s9, s3} is a separating
of D such that s1s25381 is a 3-cycle.

Subcase 2.2.1: Suppose that |V (D,)| > 3.
Subcase 2.2.1.1: Suppose that |V (D1)| > 3 or p > 3.

Subcase 2.2.1.1.1: Assume that |V(D1)| > 3 and there exists a vertex of S that dominates Dy,
say s1 — Dj. Since k = 3, there exist vertices y1, y2, y3 € V(D7) such that {y1,42,y3} — D2 and
at least one of these vertices, say yi, dominates D,. If S does not dominate D, we can choose
y1 such that y; — s; — yf, where ¢ = 2 or ¢« = 3. Furthermore, D has three non-incident arcs
2j85, where j = 1,2, 3, leading from D,, to S. Let C' and C" be Hamiltonian cycles of Dy and D,
respectively. If ¢ = 2, the cycles

53510[y;r, yl]C/ [z;, z3]s3 and SQC’[yf, y2]DaDs . .. Dp,lc/ [z;, 29] 89
and if ¢ = 3, the cycles
s10yd, yl]C/ [25,21]s1 and s253C[y]", y2]D2Ds3 .. .D,,_lc’ [21, z2]s2

are complementary in D.

Subcase 2.2.1.1.2: Assume that |V (D;)| >3 and no vertex of S dominates D;. Then we deduce
that p > 3 (otherwise Dy and D — V' (D3) are strong complementary subdigraphs of D). This case
can be solved analogously to Subcase 2.1.1.

Subcase 2.2.1.1.3: Assume that |V(Dq)| = 1 and p > 3. Then |V (D3)| = 1, since otherwise Dy
and D — V(D3) are strong complementary subdigraphs of D. We may assume, without loss of
generality, that s; — Dy and thus,

s1D2 D3 .. .Dp,lc’, [25,21]s1 and 5253D10/ [217, z2] 82

are complementary cycles of D, where 21, z3 and C are chosen as in Subcase 2.2.1.1.1.

Subcase 2.2.1.2: Suppose that |[V(D1)] = 1 and p = 2. Then S — D; and |V(D2)| > 4, since
|[V(D)| = 8. In addition, we have |N*(s;, D2)| > 1 for each i € {1,2,3} and |NT(S, D3)| > 2.
Furthermore, D has three non-incident arcs leading from Ds to S. Let C = biby...biby be a
Hamiltonian cycle of Dy, where t > 4. We may assume, without loss of generality, that D has the
arcs bisi, b;sp and b;s3, where 2 <4 # j <t.

If there exists an arc bgbs leading from C[bs, bs] to ba, the cycles
beg e bqb2 and 818283$%C[bq+1, bl]Sl

are complementary in D. Hence, since k > 3, at least one vertex of S dominates by. We consider
the three cases s; — be for i € {1,2,3}.

Subcase 2.2.1.2.1: If s3 — ba, the cycles
SQSBC[bQ,bZ']SQ and Slzfc[bzﬁrlybl]sl

are complementary in D.

Subcase 2.2.1.2.2: Suppose that s; — by and s3 ¢ N~ (b2). In this case
Cl = SQC[bQ,bZ’]SQ and CQ = 51$%C[bi+1,b1]81

are vertex-disjoint cycles that contain all vertices of D but s3.
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If by, — 83 — b1 for some index m ¢ {1,4}, we can insert s3 in one of these cycles and we are
done.

Otherwise we deduce that N*(s3,Clbe,b;]) = 0 and b; — s3 — Clbi+1,b1]. It follows that
2 < j <i—1. We can analogously show that N*(s1,C[b;41,b;]) = 0 and b; — s1 — C[bj11,b]
and that N*(sq,C[bjt1,b1]) = 0 and by — s3 — C[be,b;]. Note that si,s3 ¢ N~ (bz). Hence
s2a3b1s2 is a 3-cycle and a separating of D such that the initial component of D — {s2,2%,b1} is
the single vertex by. It follows that bo — {s1,s3,b3,b4,...,b:}.

If bgs is an arc of D, where 3 < ¢ <t — 1, the cycles
bobgi1bgi2 ... by and ssts™2iC[bs, byls

are complementary in D.

Therefore we may assume that N~(S) = {b;,b1,b2} (which implies that j = 2 and ¢ = ¢). It
follows that C5 = b1babsby is a 3-cycle and a separating set of D. Furthermore, since S — x? —
C[bs, b:—1], the digraph D —V(C3) has at least three strong components. We have solved this case
in Subcase 2.2.1.1.

Subcase 2.2.1.2.3: Suppose that N~ (be) = {bl, s1, x%} Then N~ (b3) induces a 3-cycle in D and
is a separating set of D such that the initial component of D — {b1, s1, 22} is the single vertex bs.
Hence, we obtain complementary cycles of D following the argumentation in Subcase 2.2.1.2.2.

Subcase 2.2.2: Suppose that [V(D,)| = 1. Since |V(D)| > 8 and k = 3, we have [V (D,)| > 4.
Furthermore, |N*(D,_1,5)| > 2 and therefore we may assume, without loss of generality, that
{s1,82} € N*(Dp-1).

Subcase 2.2.2.1: Suppose that p > 3 and |V (D1)] > 3.

Subcase 2.2.2.1.1: Assume that at least two vertices of S dominate Dy, say {s1,$2} — D1. Then
there exist two distinct vertices y; # yo in D7 such that y; — :c} and yo — Ds. If s3 /& Dy, we
can choose y; such that y; — s3 — yf‘ Furthermore, we may assume that s; € NT (Dp_l). Let
C be a Hamiltonian cycle of D;. It follows that

Ch = slc[yf,yg]Dng ...Dp_151 and Cs = SQC[ZJ;,ZJl]J]}SQ

are vertex-disjoint cycles in D that include all vertices of D but s3. Note that s3 — s;. By
Lemma 2.1, the vertex sz either can be inserted in C or s3 — C7. In the first case it is immediate
that D is cycle complementary and in the latter case s, € N*(D,_1). But then

52C Yy, y2lD2Ds ... D189 and s351C[ys , y1]wis3

show that D is cycle complementary.

Subcase 2.2.2.1.2: Assume that exactly one vertex of S, say s1, dominates D;.

If s € NT(Dp_1), we choose a vertex y; € V(D;) such that y; — sz — y7. Let C be a
Hamiltonian cycle of D;. Then

s351C0[y3, y)o1ss and s2Cly;, y2]DaDs ... Dy 159

are complementary cycles of D.

Otherwise we have N*(D,_;) = {1, 51, s3}. Now we choose y; such that y; — s3 — y;” and we
consider
Cy = 51C[yy ,y1]ris1 and Cy = s3C[yy,y2]D2Ds ... Dy_153.

These cycles are vertex-disjoint and contain all vertices of D except sy. It follows that sy — D;
for j =2,3,...,p— 1 (otherwise C5 can be extended by s2). Hence

$9D9Ds . .. Dp_1:13}52 and 53510[yf, y1]83
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are complementary cycles of D.

Subcase 2.2.2.1.3: Assume that all vertices of S can be inserted in the Hamiltonian cycle D;. This
case can be solved analogously to Subcase 2.1.2.

Subcase 2.2.2.2: Suppose that p > 3 and |V (D1)| = 1. Then S — 2% and |V(D2)| = 1, since

otherwise Dy and D — V(Ds) are strong complementary subdigraphs of D. Since k > 3, at least

one vertex of S, say s1, dominates x3.

If s € NT(Dp_1), the cycles
81D2D3 e Dp,181 and 52531'?1'%52

are complementary in D.

Otherwise we have N*(D,_1) = {z}, 52, s3} and
s351D2 D3 ... D,_153 and 52,7:%1;%52

show that D is cycle complementary.

Subcase 2.2.2.8: Suppose that p = 2. Then [V(D1)| > 4. Let C' = aqas . ..aqa1 be a Hamiltonian
cycle of Dy, where ¢ > 4. Since k = 3, |V(D2)| =1 and s1s283$1 is a 3-cycle in D, all vertices of
S can be inserted in C.

Subcase 2.2.2.5.1: Suppose that D; contains vertices a;, aj, an, such that a; — s1 — a;41,
a; — S2 — aj41 and a, — 83 — apmyr and 'l <@ < j < m < ¢q. Then, since ¢ > 4, we may
assume, without loss of generality, that ¢ + 1 # j. Note that s; and a; are adjacent.

If D has the arc a;s;, the cycles
$1Clait1,a5]s1 and SQC[ajH,am]53C[am+1,ai]x%52

are complementary in D.

Otherwise s1 — a; and C3 = sja;x1s1 is a 3-cycle in D. If D — V(Cs) is strong, we are done. If
INT(x,D—V(C3))| > 1 for all vertices z € V(D) — V(C3), the terminal component of D — V(Cj)
is not a single vertex. We have solved this case in Subcase 2.2.1. Hence, we may assume that
Nt(aj_1) =V(Cs). If a; — a;, the cycles

$1Cait1,a;-1)$1 and $2Clajy1, am)s3Clam+1, ai]aj.T%SQ

are complementary in D. Therefore we may assume that D has the arc a;ja;. Now we consider the

3-cycle Cé = sya;a;s1. Following the argumentation above, we deduce that NT(a,_1) = V(Cy).
But then
@i@i+1 - aja; and $152C[aj41, Gm]S3Clam+1, ai_l]x%sl

show that D is cycle complementary. We can analogously solve the case 1 <i<m < j <gq.

Subcase 2.2.2.8.2: Suppose that a;, a; and a,, can be chosen such that | {¢, j, m} | = 2, but not such
that |{i,j,m} | = 3. We may assume, without loss of generality, that a; = a; and a;11 = a;j11. It
follows that s3 and a; are adjacent.

If a; — ss3, the cycles
1
$3C[am+1,a:]s3 and s152Cait1, am]T]S1

are complementary in D.

Othwerwise s3 — a; and C3 = sza;x1s3 is a 3-cycle in D. Like in Subcase 2.2.2.3.1 it follows that
N7(a;—1) = V(C3) and thus,

1
s283a;82 and $1C[a;41,a;-1]2]

show that D is cycle complementary.
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Subcase 2.2.2.3.3: Suppose that a;, a; and a,, can be chosen such that |{,7,m}| = 1, but not
such that |{, 4, m}| > 1. This case can be solved analogously to Subcase 2.1.2.

Subcase 2.3: Suppose that k = 2.

Subcase 2.3.1: Suppose that |V(D,)| > 3. Note that the case p > 3 and [V (D;)| > 3 can be solved
analogously to Subcase 2.2.

Subcase 2.3.1.1: Suppose that p > 3 and |V(D;)| = 1. Then DIS] is a tournament and we may
assume, without loss of generality, that s; — so.

If |V(D3)| > 3, it is easy to see that Dy and D — V(D3) are complementary strong subdigraphs
of D.

Otherwise we have |V (D3)| = 1. Since [N~ (D3)| > 2 and N~ (D3) C (V(D1)US), it is immediate
that Dy has at least one negative neighbor s; in S. Let P; and P, be complementary paths of D,
such that the last vertex of P; dominates s; for j = 1,2. Then

2
ngiSCng,ng,i and SZ'DQDB e Dpflljisi

are complementary cycles of D.
Subcase 2.3.1.2: Suppose that p =2 and |V(Dy)] > 3.

If both s; and so have positive and negative neighbors in D1, a Hamiltonian cycle of Dy can be
extended by s; and so. This extended cycle and a Hamiltonian cycle of Dy are complementary
cycles of D.

Therefore we may assume that at least one vertex of S dominates D;. If S — D, the digraph D
is cycle complementary, since | N~ (Ds, D1)| ,|N=(S, D2)| >2. Otherwise we assume that s; — D
and that ss_; has positive and negative neighbors in D; for an index ¢ € {1,2}. It follows that
D; contains vertices y; # yo such that y; — Dy and y3 — s3_; — y; Let P, and P be
complementary paths of D, such that the last vertex of P; dominates s; for j = 1,2 and let C be
a Hamiltonian cycle of D;. Then

5iClyy, y2)Pisi and s3_;Clys, y1] Ps—is3—

are complementary cycles of D.

Subcase 2.53.1.8: Suppose that p = 2 and |[V(Dj1)| = 1. Then |[V(D3)| > 5, since |V(D)| > 8.
Furthermore, D[S] is a tournament and hence we may assume, without loss of generality, that
s1 — 82. Let C'= b1bs...b:by be a Hamiltonian cycle of Dy, where t > 5. Since k = 2, we have
INT(s1,D2)| > 2, [NT(s2,D2)| > 1 and [N~ (s2, D2)| > 1. Therefore we may assume, without
loss of generality, that D has the arcs b1s1, b;s2 and s2b; 11, where 4 # 1. It follows that D has no
arc bgby leading from Cf[bs, b to ba, because otherwise

bgbabs ... by and s15227C[bgs1,b1]s1

are complementary cycles of D.

Subcase 2.3.1.3.1: Suppose that b;11 ¢ N~ (s1). We may assume, without loss of generality, that
s1 has no negative neighbor on C[b;11,:]. Considering D — by, it is immediate that D has an arc
leading from C/[b;41, b¢] to {bg, bs,...,b;, s1, 82, x%}, since D is 2-connected.

If D has an arc b;s2, where i +2 < j < ¢, we obtain s1 — {bj41,bi12,...,b;} because of the choice
of by. It follows that
Slc[bi+1,b1]81 and Sg,f%C[bg,bi]Sg

are complementary cycles of D.

Otherwise D has an arc bjb,,, where 1+ 1 < j <t and 3 < m < i. In this case

Cl = Sl.Z‘%C[qu_l, b1]51 and CQ = SQC[bH_l, bj]C[bm, bi]SQ
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are vertex-disjoint cycles in D. Using Lemma 2.1, it follows that there exists a vertex b,, where
2 < ¢ < m — 1, such that all vertices of C[by41,bmnm—1] can be inserted in Cy and b, — V(Cs) U
V(Clbg+1,bm-1]). Hence, D has particularly the arc b;b;+1 and thus,

Cy = by,Clbiy1,b,] and Cy = 5523C[byys1, bilsa

are vertex-disjoint cycles in D such that C; and Cj, contain all vertices of D except s;. Since
S1 — x%, we conclude that s; — Cy which implies that D has the arc s1b,,. Because of the choice
of by, it now follows that s; — C[b;+1,b;] and thus, the cycles

Slc[bH_l, b1]51 and SQZC%C[bQ, bl]SQ

show that D is cycle complementary.

Subcase 2.3.1.3.2: Suppose that b;+1 € N~ (s1). Then we may assume, without loss of generality,
that b;41 = b1. Since [N~ (s1,D2)| > 2, the vertex s; has a negative neighbor b; # by. Note that
s1 and b; are adjacent.

Subcase 2.3.1.3.2.1: Assume that by — s1. Then we consider D — {s1,b;}.
If D has an arc bsy such that b ¢ {bt, by, s1, xf}, the cycles

$2C[b1,b)s2 and sleC[bJr,bt]sl

are complementary in D.

Otherwise {s1,b:} is a separating set of D. Since so — z3 — (D — {bs, s1,52}), the digraph
D — {s1,b:} has at least three strong components and the first strong component has only one
vertex. We already have solved this case in Subcase 2.3.1.1.

Subcase 2.8.1.3.2.2: Assume that s; — b;. Following the argumentation in Subcase 2.3.1.3.2.1, we
deduce that D has an arc bsy such that b ¢ {bt, by, sl,x%}. Now we consider D := D — {bl, x%}
In the following we will show that N~ (bs) # {bl, x%} Assume to the contrary that N~ (b)) =

{bl,x%} which implies that the initial component of D" is the single vertex bs. It follows that
b2 — {bg, b4, ey bt, S1, 82}.

If so has a negative neighbor b ¢ {bs, b:}, the cycles
Cy = baCbT,bs] and Co = s,22C[bs, b]so

are vertex-disjoint and contain all vertices of D except s;. If s; can be inserted in C5, we are
done. Otherwise s; — C5 and thus,

Slc[bg, b1]51 and 82$%5282

are complementary cycles of D.

Otherwise we have N~ (sy, Do) = {by,b;}. In this case we consider D" := D — {by,by}. If
N~(s1) = {b1,b2}, the initial component of D is the single vertex s;. It follows that s; —
{bg, by, ..., by, 32,90%} and thus,

Sgl‘%ngg and 510[b3, b1]81

are complementary cycles of D. Therefore we assume that there exists an index 3 < m <t —1
such that b, — s1 — C[bym41,bt]. But then

bQC[berl, bt]SlebQ and Sl.fC%C[bg, bm]Sl

show that D is cycle complementary.
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All in all we have shown that N~ (b)) # {bl, x%} If D has the arc sobo, the cycles
SQC[bQ, bt]SQ and Sll'%blsl

are complementary in D. It remains to check the case that D has the arc s1bs. Since |[N ™ (s1, D2)| >
2, there exists an integer 3 < m <t — 1 such that b,, — s1 — C[bm+1, b¢]. In addition, following
the argumentation in Subcase 2.3.1.3.2.1, D has an arc bsy such that b ¢ {bt,bl,sl,x%}. The
vertex-disjoint cycles

Cl = le[bg,bm]sl and Cg = Sgl‘%C[bm_i_l,bt]Sg

contain all vertices of D but b;. It follows that by — C4, since b1 can be inserted in C otherwise.
But now

SQ:C?C[bQ, b]SQ

and
slc[bm+1,b1]C[b+,bm]51 lbe {bg,bg,...,bm}
le[bJF,bl]sl ifbe {bm+1,bm+2,...,bt_1}

are complementary cycles of D.
Subcase 2.3.2: Suppose that |V (D,)| = 1.

Subcase 2.3.2.1: Suppose that p > 3 and |V(D;)| > 3. Then |[N*(Dp-4,S)| > 1 and, in addition,
D has two non-incident arcs leading from V(Dpy) U {1} to S.

Subcase 2.3.2.1.1: Assume that S — D;. Then D[S] is a tournament and hence we can assume,
without loss of generality, that D has the arc s3s2. Furthermore, there exist vertices y; # ys2 in
D; such that y; — Do and yo — 1. Now it is easy to see that D is cycle complementary.

Subcase 2.83.2.1.2: Assume that sy — Dy and N~ (s2, D7) # 0. Then Dy contains vertices y1 # ya2
such that y; — Dy and y» — z}. In addition, yo can be chosen such that yo — s2 — y5 .

If sy € NT(D,_1), let C be a Hamiltonian cycle of Dy. Then
slc[yf,yg]z%sl and SQC[y;_, yl]D2D3 N Dp,182

are complementary cycles of D.

Otherwise we deduce that N+ (D,_1) = {s1,21}. If [V(Dp_1)| > 3, the digraph D has two non-
incident arcs z181, 2:2:1:% leading from Dp_; to {sl,x%}. Let C’ be a Hamiltonian cycle of D,_;.
Then

Slc[yf, yg]C’, [Z;r, 21]51 and SQC[y;r, y1]D2D3 ‘e Dp,QC/ [Zfr, 22]50%52

are complementary cycles of D. Therefore we may assume that V(D,_1) = {z}. Note that z — s;
or z — Sa.

Subcase 2.3.2.1.2.1: Suppose that p > 4. It follows that 21 € N*(D,_2). Hence
51C[yy, y2]zs1 and s2Clys,y1]D2Ds . . .Dp_Q,’E%SQ
are complementary cycles of D.
Subcase 2.3.2.1.2.2: Suppose that p =3 and z — s2. Then
59C[ys ,y1)zsa and s1C[y], ya]xis:

are complementary cycles of D.

Subcase 2.3.2.1.2.3: Suppose that p =3 and z — s7.

If there exists a vertex y # y2 in D; such that y — 21, the cycles
59Cys,ylrise and s.C[y™, ya]zs
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show that D is cycle complementary.

Otherwise {y2, 2z} is a separating set of D such that the initial strong component of D — {ys, 2z} is
the single vertex x1. Since there is no arc between x1 and D; —ys, the decomposition of D —{y, 2}
according to Theorem 2.6 has at least three strong components. This case was solved in Subcase 1.

Subcase 2.8.2.1.3: Assume that N~ (s;, D1) # () for each i € {1,2}. We may assume, without loss
of generality, that s, € NT(D,_1). Let C be a Hamiltonian cycle of D;.

If there exist vertices y; # yo in D; such that y; — s; — y; for i € {1,2}, the cycles
s1C[y7, yo]risy and 52C[ys,y1]D2Ds . . .Dp_159

are complementary in D.

The case that there is no pair y; # yo of vertices in D; such that y; — s; — y:r for i € {1,2} can
be solved analogously to Subcase 2.1.1.

Subcase 2.3.2.2: Suppose that p > 4 and |V (D;1)| = 1. Then we conclude that N7 (D3, S) # 0
and NT(D,_1,S5) # 0. Therefore we may assume that s; € N~ (D3) for an index i € {1,2}. Note
that |V(D2)| = 1, since otherwise Dy and D — V(D3) are strong complementary subdigraphs of
D.

If s, € Nt(Dp_1), the cycles
S»L'DQDB NN Dpflsi and 8371'1'%:6%83,1'

show that D is cycle complementary.
The remaining case that N*(D,_1) = {834, z1} can be solved analogously to Subcase 2.3.2.1.

Subcase 2.5.2.8: Suppose that p = 3 and |[V(D;)| = 1. Then |V(D3)| > 4, since |V(D)| > 8.
Furthermore, we may assume, without loss of generality, that s; — s2. But now a Hamiltonian
cycle of Dy and 515223215, are complementary cycles of D.

Subcase 2.3.2.4: Suppose that p = 2. Then |V (D;)| > 5, since |V(D)| > 8. In addition, at most
one vertex of S dominates D;. Note that every vertex of D has at least three negative neighbors,
since otherwise D is cycle complementary by the case [V (D;)| = 1.

Subcase 2.8.2.4.1: Suppose that there exists a vertex s € S such that s — D;. Then we may
assume, without loss of generality, that sy — Dj and N~ (s2, D7) # 0. It follows that D has the
arc sss1. Furthermore, Dy contains vertices y; # yo such that y; — x% and Yo — S9 — y; Since
|IN=(s2)| > 3, there is a vertex y # yo in D; such that y — {s2,21}. Let C' be a Hamiltonian
cycle of Dy. Then

520[y3 ,yls2 and s1Cly", yalzis:

are complementary cycles of D.

Suppose now that neither s; nor so dominates D;. Note that we can solve the case that y; cannot
be chosen unequal to y» analogously to Subcase 2.1.1. We consider the following cases.

Subcase 2.8.2.4.2: Suppose that y; and yo can be chosen such that, without loss of generality,
yi§ = y2, but not such that y;~ # ys_; for each i € {1,2}. Let C be a Hamiltonian cycle of D;.

Subcase 2.3.2.4.2.1: Assume that s — s1. Then D has the arc soy1, since otherwise
1 +
siyexyst and s2Clysy , y1]se

are complementary cycles of D. It follows that ss — Dj — yo, a contradiction to the fact that
N~ (s2)| > 3.

Subcase 2.3.2.4.2.2: Assume that s; — s3. We consider the positive neighborhood of s; and the
negative neighborhood of ss.

18



If T := N*(s1) = {s2,y2}, the digraph D — T has at least three strong components s1, ] and
Dy — yo and thus, D is cycle complementary by one of the Subcases 2.3.2.1, 2.3.2.2 or 2.3.2.3.

If U := N~ (s3) = {s1,71,92}, the set U is a minimal separating set of D. It follows that {s2} is
the initial component of D — U and thus, ss — D1 — U. Let y # y1 be a negative neighbor of s;
in D;. Then

51C[yy, 2z1)s1 and SQC[Zr,y]z%Sl

are complementary cycles of D.

All in all we may assume that [N*(s1)| > 3 and [N~ (s2)| > 4. Tt follows that D has the arc sqy; .
In addition, sy dominates the successor of y3 on C and has a negative neighbor zo ¢ {1, 51,92}
Note that y5 has a positive neighbor w besides its successor on C.

If w =z}, the cycles
s1ygwisy and soCys ™, ya)se

are complementary in D.

If w is on C[zf,41], the cycles
Cy = 5197 y3 Clw,y1]s1 and Co = SQC[y;+,ZQ]$}SQ

are vertex-disjoint. Using Lemma 2.1, it follows that if D is not cycle complementary, there is a
vertex u € V(C[z5,w™]) such that D[{s1,z1} U V(C[uT,y5])] has a Hamiltonian cycle C’ and
u — C’. But then C’ and soC[ys ™+, u]z1ss show that D is cycle complementary.

If wis on Clyy T, 22], either y5 — Clys,w] or there exists a vertex u € V(C[y; ,w]) such that
U — y; — uT. The latter implies that s; and u are adjacent for each i = 1,2 and thus,
s; — Clyg ,u] for i = 1,2. Now we can apply the same arguments as above on v~ and Nt (u™)
instead of y5~ and N*(y5 ). In the former case we can apply the same arguments as above on w™
and Nt (w™) instead of y5~ and N*(y; ). By doing this, we obtain complementary cycles of D in
a finite number of steps.

Subcase 2.3.2.4.2.3: Assume that s; and s, are not adjacent. Recall that s; has at least one
positive neighbor in D; besides yf and that neither s; nor s, can be inserted at another position
in C. It is easy to see that these observations lead to a contradiction to the fact that s; and so
are not adjacent.

Subcase 2.8.2.4.3: Suppose that y; and ya can be chosen such that y; # yo and y;” # y3_; for each
index ¢ = 1,2. In this case we may assume, without loss of generality, that D has the arc yoy;.
Note that if 2} has a negative neighbor on the path C[yy ,y; |, with the help of Lemma 2.1 it is
easy to check that D is cycle complementary (choose y € N~ (z}) such that Cly,y; ] has minimal
length).

Subcase 2.3.2.4.3.1: Assume that s; and s, are not adjacent.

Assume that there is an arc uy;” in D such that u is on C[y5,y;]. Then u and s; are adjacent.
Due to the observations above, it follows that s; — C’[u,ygr |. Hence, s; and so are adjacent, a
contradiction.

Considering D —yj, it is easy to see that D has an arc leading from {s2}UV (Clys, y1]) to Cly;, ya].
Let v1v9 be such an arc such that C[yf, v2] has minimal length and, under this condition, Cv1, y1]
has minimal length. Let v, = vs. Since N=(S,C[ys,y;]) = 0 and E(D[S]) = 0, we conclude
that v3 — Clys,v1] and v3 — so.

Now we consider the vertex-disjoint cycles
C1 = s1Clyf  vslzpsy and Cy = 5:C[y3 , v1]Clva, o sa.

If vy = y; or if all vertices of the path C[v]",y1] can be inserted in Cf, it is immediate that D is
cycle complementary. Otherwise there exists a vertex on C[v;,y1] that dominates Cy. Since S
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has no negative neighbors on C[v}",y; ], it follows that this vertex is v, i.e., y1 — C;. Because
[N~ (v2)| > 3, there exists a negative neighbor w of vy such that w ¢ {v1,vs3}. Note that w is not
on Clv, 1]

It easy to check that D is cycle complementary if w € {s1,s2} U V(Cly2,v;]) U V(Clyi,v3])-
Hence w is on Cvy,y, | and thus, D contains the vertex-disjoint cycles

C1 = 51Clyi , v3]52Clys , y1]s1 and Ch = Clva, wlvs.

Note that the vertex ys can be inserted in Ci. Using Lemma 2.1, it follows that there exists a
vertex u € V(Clw",y;]) such that all vertices of the path Clut,ys] can be inserted in C; and
uw— A:=V(C})UV(C[u",ys]). Therefore u™ has a negative neighbor z € A. Now it is easy to
check the cycle complementarity of D.

Subcase 2.3.2.4.3.2: Assume that so — s;. Since S has no negative neighbor on C[yy 1], it
follows that sy — C[y;, y1]-

Considering D — y1, it is easy to see that D has an arc v;vs leading from Clys,y; ] to Cly;, ya].
Now we consider the vertex-disjoint cycles

Cy = Clva,v1]vy and Cy = @C[Uf,yl]x}s@
Using Lemma 2.1, it follows that there exists a vertex v € V/(Cly;,v5]) U {51} that dominates
V(C) UV(Clo,05)).
If v3 = s1, let w be a negative neighbor of s on Cly;", 45 ]. It follows that

51C[wT, yolats and soClys ,w]sy

are complementary cycles of D.

If v # s1, the vertices so and vs are adjacent. If D has the arc vsso, the cycle
C =50, 11]s10fyT, va]zyse

and a Hamiltonian cycle of D[V (C1) U V(C[v{,v5])] are complementary cycles of D. Therefore
we assume now that D has the arc sovs. Recall that so has at least three negative neighbors
and thus, a negative neighbor z2 # y2. We now consider the possibilities zo € V(C[va,y5 ),
22 € V(C[vy,v5]) and 25 € V(Cly;,v5]). In the first two cases we choose z2 € N~ (s2) such that
C'#2, y2] has maximal length.

Subcase 2.3.2.4.8.2.1: Suppose that zg € V(C[vs, y; |). In this case we consider the vertex-disjoint
cycles
C1 = 10y, vs]Cley  pelyrzist and Ch = s2C[y3, v1]Clvz, 22]s2.

Since N~ (S, Clys ,y; ]) = 0, the vertices of the path C[v}",y; ] can be inserted in Cy. If the vertices
of C[vy, 25 ] cannot be inserted in Cy, there exists a vertex u on Clvy, z; | such that u — Cu™, v;]
and u — sy by Lemma 2.1. In addition, V(C2) UV (C[u™,v;]) induces a Hamiltonian subdigraph
of D. But then

C1 = 51C0yy ,ulris1 and Ch = soC[ys, v1]Clva, ya]se

are vertex-disjoint cycles of D such that the vertices of C' [vf, y1] can be inserted in C] and the
vertices of C[u™, v, | can be inserted in C4. It follows that D is cycle complementary.

Subcase 2.5.2.4.3.2.2: Suppose that zo € V(C[vg,v5]). We consider the vertex-disjoint cycles
C = slc[yf,ZQ]z}SQC[vf,yl]sl and Co = v1C[ve, v1].

Using Lemma 2.1, the vertices on C[z,v; ] can be inserted in Cs.

Subcase 2.3.2.4.3.2.3: Suppose that zo € V(Cly;,v5]). In this case we choose zo such that
29 — 89 — C[z4,v3]. Then we consider the vertex-disjoint cycles

C = slc[yf,ZQ]:E}sl and Cy = SQC[y;,Ul]C[vg,yg]SQ.
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Note that all vertices of the path C[z3,v5 ] can be inserted in Cy by using Lemma 2.1.

Since s1 has no negative neighbor on C[v{", y1], it follows that y; — Cly;", 22]. Because |N~(23)| >
3, the vertex zi has a negative neighbor vy ¢ {s2,20}. It is easy to check that D is cycle
complementary if vy € {s1} U V(C[ya, 22]). Therefore we may assume that v4 € V(C[z,y5]).
But then

C1 = 590 T, y1]s1C[yy, z2)s2 and C% = v4C[zf, v3]Cvf, v1]Clv2, v4]
are vertex-disjoint cycles in D such that the remaining vertices on C [’U;r ,V5 | can be inserted in
Cs. Hence, D is cycle complementary.
Subcase 2.8.2.4.8.83: Assume that s; — so. It follows that s; and ys are adjacent.

If yo — s1, the cycles
s1Cly, yals1 and s2C[y3, yilatse

are complementary in D.

If s; — Clyi,y2], the vertex s; has a negative neighbor on the path Clys,y; ] and thus, D is
cycle complementary.

Therefore we may assume that there exists a vertex z; € V(C[yf,y5]) such that z; — s; —
C[z],y2]. We choose z; such that C[z1,y2] has minimal length. Note that z; and y, are adjacent.

Subcase 2.3.2.4.3.3.1: 1f zf # yo and yo — 21, the vertex s; has a negative neighbor on the path
Clys, 27 ] and thus, D is cycle complementary.

Subcase 2.8.2.4.3.3.2: 1f 2 # yo and 21 — 92, we are in Subcase 2.3.2.4.3.2 which we have already
solved.

Subcase 2.5.2.4.5.3.3: Assume that 2,7 = ya. Note that yi” has a negative neighbor w besides s;
and ;.

If w ¢ V(Clyi, z1]), it is easy to check that D has complementary cycles.
If w € V(Cly;, 21]), the vertex-disjoint cycles

C = 31y2820[y;»y1]$%51 and Cy = C[yf,w]yf

contain all vertices of D except V(Clw™, z1]). Note that if z; — Cy, the digraph D is cycle
complementary. By Lemma 2.1 there exists a vertex u on Clw™, 21| such that the vertices of
Clu™, z1] can be inserted in Cy (resulting in an extended cycle C4) and v — C%. Tt follows
particularly that the vertex u* has a negative neighbor on C%. Now it is easy to check that D is
cycle complementary.

For the opposite direction it is immediate that a 2-connected, 2-regular in-tournament with 2m+ 1
(m > 4) vertices is not cycle complementary. O
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