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Abstract
A sequence {dj,ds,...,d,} of nonnegative integers is graphic (multigraphic) if
there exists a simple graph (multigraph) with vertices vy, v9,...,v, such that the

degree d(v;) of the vertex v; equals d; for each i = 1,2,...,n. The (multi)graphic
degree sequence problem is: Given a sequence of nonnegative integers, determine
whether it is (multi)graphic or not. In this paper we characterize sequences that
are multigraphic in a similar way, Havel [4] and Hakimi [3] characterized graphic
sequences. Results of Hakimi [3] and Butler [1] follow.

1 Notation and introduction

In this paper we consider finite, undirected graphs G = (V, E) without loops with vertex
set V and edge set E. A graph is called simple if there is at most one edge between each
pair of vertices and a multigraph otherwise. The number of vertices |V| is called the order
of G and is denoted by n(G).

If there is an edge between two vertices u,v € V, then we denote the edge by wwv.
Furthermore, we call the vertex v a neighbor of u and say that uv is incident with u. The
neighborhood of a vertex w is defined as the set {v | uv € E} and is usually denoted by
N(u). For a vertex v € V' we define the degree of v as the number of edges incident with
v. A vertex v € V is called isolated if d(v) = 0.

Let X C V be a subset of the vertex set of a graph G = (V, E). Then G — X denotes
the graph that is obtained by removing all vertices of X and all edges that are incident
with at least one vertex of X from G. For a subset Y C E of the edge set the graph G —Y
is obtained by removing all edges of Y.

A sequence {dy,ds,...,d,} of nonnegative integers is graphic (multigraphic) if there
exists a simple graph (multigraph) with vertices vy, vs, ..., v, such that d(v;) = d; for each
i=1,2,...,n. Notethat d; = 0 forani € {1,2,...,n} if and only if v; is an isolated vertex.
Therefore we only consider sequences {di, ds, ...,d,}, where min{d; | i =1,2,...,n} > 1.

The (multi)graphic degree sequence problem is: Given a sequence of nonnegative inte-
gers, determine whether it is (multi)graphic or not. Havel [4] and Hakimi [3] presented a
first solution of the graphic degree sequence problem in 1955 and 1962, respectively.

Theorem 1 (Havel [4] 1955, Hakimi [3] 1962). A sequence dy > dy > ... > d,,, where n >
2, of nonnegative integers is graphic if and only if the sequence {dy —1,d3 —1,...,dg,+1 —
1,dg,+2,day 43, ... ,dy} is graphic.



We now turn our attention to the multigraphic degree sequence problem. A proof of the
following characterization by Hakimi [3] can also be found in the article [6] of Takahashi,
Imai and Asano.

Theorem 2 (Hakimi [3] 1962). A sequence dy > ds > ... > d,,, where n > 2, of nonnega-
tive integers is multigraphic if and only if the sum Y. d; is even and dy < do+ds+- - -+d,.

In 1976, Boesch and Harary presented in their article [1] another solution which is due
to Butler.

Theorem 3 (Butler [1] 1976). Let dy > dy > ... > d, > 1 be a sequence of nonnegative
integers and let 2 < j < n be an index. Then the sequence {dy,ds, ..., d,} is multigraphic
if and only if the sequence {dy —1,ds,ds ... ,dj_1,d; —1,djs1,djs2, . .., dy} is multigraphic.

This result suggests a construction method for multigraphs with a given degree se-
quence. Butler also proved that this procedure constructs a multigraph of maximal edge
connectivity if the index j is selected equal to n in each step. In 1994, Takahashi, Imai
and Asano [6] presented another algorithm to determine whether a given sequence of non-
negative integers is multigraphic and to construct a multigraph that realizes the degree
sequence. However, the constructed multigraph is in general not connected (cf. Remark 9
and Figure 1).

Theorem 4 (Takahashi, Imai & Asano [6] 1994). Let dy > dy > ... > d, > 1 be a

sequence of nonnegative integers and let ¢ = dy —dsy. Then the sequence {dy,ds, ..., d,} is
multigraphic if and only if the sequence {dy, d,, ..., d } is multigraphic, where the integers
m and d; for j =1,2,... m are defined as follows.

(i) If c>dy, thenm =n—1,dy =d, —d, and d; = d; for j=2,3,...,n—1;
(i) Ifc=0, thenm=n—1,d;=d; forj=1,2,....n—2 and d,, | = d, 1 — dy;

(i) If 0 < ¢ <dp, then m = n, dj = dy — c and d; = d; for j = 2,3,...,n — 1 and
d =d,—c.

An overview of degree sequences and related problems can be found in [7].

In this paper we characterize sequences that are multigraphic in a way similar to the
characterization of graphic sequences by Havel [4] and Hakimi [3] in Theorem 1. The
results of Hakimi (Theorem 2) and Butler (Theorem 3) follow.

Theorem 5. Let n > 4 be an integer and let dy > dy > ... > d,, > 1 be a sequence of
nonnegative integers. Let 2 < 7 < n be an index and let 1 < m < d,. Then the sequence
{d1,ds,....d,} is multigraphic if and only if the sequence {dy — m,ds,d3...,d;—1,d; —
m,dji1,djto, ..., dy} is multigraphic.

Choosing j = n and m = d,,, we conclude the next result as a corollary of Theorem 5.



Corollary 6. Let n > 4 be an integer and let dy > dy > ... > d, > 1 be a sequence of
nonnegative integers. Then the sequence {dy,ds, ..., d,} is multigraphic if and only if the
sequence {dy — d,,ds,ds ..., d,_1} is multigraphic.

Remark 7. (a) Corollary 7 together with Observation 8 as the termination criterion leads
to an algorithm that constructs a multigraph with a given degree sequence.

(b) A necessary condition for a sequence dy > dy > ... > d, > 1 of integers to be realiz-
able by a connected multigraph is that the sum of the integers satisfies the inequality

(¢) Consider the algorithm suggested in (a). If d} = d.,_, = r > 1 in the k-th step of the
construction, then d} = dy = ... =d,_, = r. A multigraph with this degree sequence
is given by G' = (V') E'), where V' = {x1, 29, ..., x5} is the vertex set of G'. The
edges of G" are defined as follows. The multigraph G" has § edges between x; and ;41
if v is even and %1 edges between xo;_1 and x9; and % edges between xq; and ;41

if v is odd, where 1 = 1,2,....n—k and j = 1,2,...,"7_‘% and all indices are taken

modulo n — k. Note that G' is r-edge-connected if r > 2.

(d) Let > 7" d; > 2n — 2 and consider the algorithin suggested by Corollary 7 and Obser-
vation 8. In each step of the construction of the multigraph two vertices are joined by
J edges, where j is a sum (or difference) of some of the integers d;. It follows that if
(c) is used as an additional termination criterion, the multigraph constructed by the
algorithm is p-edge-connected, where p is the greatest common divisor of di,ds, . .., d,.

(e) If two vertices are joined by j edges, this can be interpreted as a single weighted edge
with weigth j. The weighted simple graph constructed by the procedure suggested in a)
contains at most one cycle. Therefore it is a natural question to ask for necessary and
sufficient conditions for a given degree sequence to be realizable by a weighted tree.

2 Results

Lemma 8. Letd =dy > dy > --- > d,, be a non-increasing sequence of positive integers.
If d is realizable by a 2-tree, then

[d;/2] <n+k—2 (1)

k
=1

7

for every k =1,2,...,n. Furthermore, if (1) is satisfied with equality, then for every 2-tree
realization T' of d:

(i) the vertices corresponding to dy,ds, . .., dy induce a tree in T';

(i1) the vertices corresponding to dyi1,dgio, . .., dy, induce an independent set in T';



(111) every vertex of T is adjacent to at most one edge of weight 1.

Proof. Let T be a 2-tree with vertex set {x1,zs,...,2,} such that d(x;) = d;. Since each
edge has weight at most 2, it holds

k

>INt 2 3 Ell

On the other hand, the vertices {x1, za, ...,z } induce a weighted forest F in T" and thus,

> IN(2;)| = 2|E(F)| + |[E(F,F)| <n+|E(F)| =1 <n+k-2.
U

Lemma 9. Letd =dy > dy > --- > d,, be a non-increasing Sequence of positive integers.
If ..., then d is not realizable by a 2-tree.

Proof. ... O

Theorem 10. Letd =dy; > dy > --- > d,, where n > 4 be a non-increasing sequence of
positive integers that is 2-realizable. Let d’ be defined as follows:

(i) If d, = 2, let A’ be a non-increasing ordering of dy — 2,ds,ds, ..., dp_1.

(i) If d,, =1 and dy — 1,da,ds, . .., d,_1 is not of the structure as described in Lemma 9,
let A’ be a non-increasing ordering of dy — 1,ds,ds, . .., d,—_1.

(i1i) If d, =1 and dy = 1,ds,ds, ..., d, 1 is of the structure as described in Lemma 9, let
d’ be a non-increasing ordering of dy,ds, ..., d;—1,d; — 1,dj11,dj4o, ..., dy_1, where
J 15 the minimal index with the property that d; is odd.

The sequence d is realizable by a 2-tree if and only if d' is realizable by a 2-tree.

Proof. Clearly, if d’ is realizable by a 2-tree, then the same holds for d. Now suppose that
d is 2-tree realizable. We shall discuss two cases depending on the value of d,,.

If d, =2, letd =d;, > d, > --- > d,_, be a non-increasing ordering of d; —
2,dy,ds, . ..,d,_1. Note that d’ is not of the structure described in Lemma 9, since the
original sequence d is not. Let T be a 2-tree with vertex set {1, xs, ..., 2, } and d(z;) = d;

chosen under the condition that the minimum j of the index set
{i: z; is adjacent to a leaf of T'}
is minimal. If j = 1, then clearly T'—vy, where y is a leaf adjacent to z; is a 2-tree realization

of d’. So assume that j > 2.
0



The proof of the above theorem immediately gives us a recursive construction rule to
construct a 2-tree that has a given degree sequence.

Theorem 11. Letd =d; > dy > --- > d,, be a non-increasing sequence of positive integers
that is 2-realizable. The sequence is realizable by a 2-tree if and only if

(1) for every k =1,2,...,n: Zle [d;/2] <n+k—2;

Proof. Necessity. This part follows from Lemmas 8 and 9.

Sufficiency. Suppose that d satisfies (1) and (2). The proof will be by induction on n.
If n = 2, then either d; = dy = 1 or d; = dy = 2 both of which are realizable by a properly
weighted K5. If n = 3, then eitherd =2,1,1ord = 3,2,1 or d = 4, 2, 2 all three of which
are realizable by a path of length two with properly weighted edges.

Now let n > 4. We shall discuss two cases depending on whether a reduced sequence
satisfies (2).

Suppose first that dy —d,,, ds, ds, . . ., d,,—1 satisfies (2) and that [(dy —d,,)/2] < [d1/2].
(In particular, this is the case when d, = 2, since the original sequence d satisfies (2).)
Let d' =dy > d, > --- > d_; be the corresponding ordered sequence with d,. = d; — d,,.
Assume that d’ does not satisfy (1). Let ¢ be an index such that >0, [d}/2] > (n —
1)+t —2=n+t—3. Obviously, it holds that ¢ < r. Note that there exists a 2-tree
realization of d such that z,, is a leaf. Hence there exists an index j such that the sequence
dy,dy, ... ,dj—1,d; —dp,djq,djgo,. .. dy_q is 2-tree realizable. Let d* =dj > d5 > --- >
d’_, be the corresponding ordered sequence with d! = d; — d,. Clearly, df > d; for
1=1,2,...,5—1. If j > ¢+ 1, then

t

D[ /212) [di/2]> (n—1) +t -2,

i=1 i=1

a contradiction to (1). If j <t, then s > r >t and thus,

STIdi/2 =3 [d/2] > =)+t -2,

1=

again a contradiction to (1). So d’ satisfies (1) and is realizable by a 2-tree by the induction
hypothesis. Adding a vertex x and connecting z with z’; via an edge of weight d,, results
in a 2-tree realization of d.

Suppose second that dy—d,,, ds, ds, . . ., d,_1 satisfies (2) and that [(d1—d,)/2] = [d1/2].
Then d,, = 1 and d; is even. Let d' =d} > d, > --- > d|_; be the corresponding ordered
sequence with d, = d; — 1. Assume that d’ does not satisfy (1). Let ¢ be an index such
that Z;Zl [d)/2] > (n—1)+t—2 =n+t—3. Since >.'_, [d}/2] = >'_, [di/2], it follows
that > ., [d;/2] = n+t—2. Hence any 2-tree realization of d has the structure described
in Lemma 8.



Suppose last that dy — d,,,da,ds, ...,d,—1 does not satisfy (2). Then d,, = 1, d; is
odd, and ds,ds,...,d,_1 are even. We consider the sequence dq,ds — 1,ds,dy, ..., d,_1
which satisfies (2). Let d' =d} > d, > --- > d,_, be the corresponding ordered sequence
with d. = dy — 1. Assume that d’ does not satisfy (1). Let ¢ be an index such that
St [di)2] > (n—1)+t—2 =n-+t—3. Obviously, it holds that ¢ < r. Note that z,, is a
leaf in every 2-tree realization of d. Hence there exists an index j such that the sequence
dl, dg, e 7dj—17 dj — 1, dj+1, dj+2, cey dn—l is 2-tree realizable. U
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