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Abstract

A sequence {d1, d2, . . . , dn} of nonnegative integers is graphic (multigraphic) if
there exists a simple graph (multigraph) with vertices v1, v2, . . . , vn such that the
degree d(vi) of the vertex vi equals di for each i = 1, 2, . . . , n. The (multi)graphic
degree sequence problem is: Given a sequence of nonnegative integers, determine
whether it is (multi)graphic or not. In this paper we characterize sequences that
are multigraphic in a similar way, Havel [4] and Hakimi [3] characterized graphic
sequences. Results of Hakimi [3] and Butler [1] follow.

1 Notation and introduction

In this paper we consider finite, undirected graphs G = (V,E) without loops with vertex
set V and edge set E. A graph is called simple if there is at most one edge between each
pair of vertices and a multigraph otherwise. The number of vertices |V | is called the order
of G and is denoted by n(G).

If there is an edge between two vertices u, v ∈ V , then we denote the edge by uv.
Furthermore, we call the vertex v a neighbor of u and say that uv is incident with u. The
neighborhood of a vertex u is defined as the set {v | uv ∈ E} and is usually denoted by
N(u). For a vertex v ∈ V we define the degree of v as the number of edges incident with
v. A vertex v ∈ V is called isolated if d(v) = 0.

Let X ⊂ V be a subset of the vertex set of a graph G = (V,E). Then G−X denotes
the graph that is obtained by removing all vertices of X and all edges that are incident
with at least one vertex of X from G. For a subset Y ⊂ E of the edge set the graph G−Y
is obtained by removing all edges of Y .

A sequence {d1, d2, . . . , dn} of nonnegative integers is graphic (multigraphic) if there
exists a simple graph (multigraph) with vertices v1, v2, . . . , vn such that d(vi) = di for each
i = 1, 2, . . . , n. Note that di = 0 for an i ∈ {1, 2, . . . , n} if and only if vi is an isolated vertex.
Therefore we only consider sequences {d1, d2, . . . , dn}, where min{di | i = 1, 2, . . . , n} ≥ 1.

The (multi)graphic degree sequence problem is: Given a sequence of nonnegative inte-
gers, determine whether it is (multi)graphic or not. Havel [4] and Hakimi [3] presented a
first solution of the graphic degree sequence problem in 1955 and 1962, respectively.

Theorem 1 (Havel [4] 1955, Hakimi [3] 1962). A sequence d1 ≥ d2 ≥ . . . ≥ dn, where n ≥
2, of nonnegative integers is graphic if and only if the sequence {d2 − 1, d3 − 1, . . . , dd1+1 −
1, dd1+2, dd1+3, . . . , dn} is graphic.

1



16
 F

eb
ru

ary
 20

10

FIN
AL D

RAFT

We now turn our attention to the multigraphic degree sequence problem. A proof of the
following characterization by Hakimi [3] can also be found in the article [6] of Takahashi,
Imai and Asano.

Theorem 2 (Hakimi [3] 1962). A sequence d1 ≥ d2 ≥ . . . ≥ dn, where n ≥ 2, of nonnega-
tive integers is multigraphic if and only if the sum

∑n

i=1
di is even and d1 ≤ d2+d3+· · ·+dn.

In 1976, Boesch and Harary presented in their article [1] another solution which is due
to Butler.

Theorem 3 (Butler [1] 1976). Let d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 be a sequence of nonnegative
integers and let 2 ≤ j ≤ n be an index. Then the sequence {d1, d2, . . . , dn} is multigraphic
if and only if the sequence {d1−1, d2, d3 . . . , dj−1, dj−1, dj+1, dj+2, . . . , dn} is multigraphic.

This result suggests a construction method for multigraphs with a given degree se-
quence. Butler also proved that this procedure constructs a multigraph of maximal edge
connectivity if the index j is selected equal to n in each step. In 1994, Takahashi, Imai
and Asano [6] presented another algorithm to determine whether a given sequence of non-
negative integers is multigraphic and to construct a multigraph that realizes the degree
sequence. However, the constructed multigraph is in general not connected (cf. Remark 9
and Figure 1).

Theorem 4 (Takahashi, Imai & Asano [6] 1994). Let d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 be a
sequence of nonnegative integers and let c = d1 − d2. Then the sequence {d1, d2, . . . , dn} is
multigraphic if and only if the sequence {d′1, d

′

2, . . . , d
′

m} is multigraphic, where the integers
m and d′j for j = 1, 2, . . . , m are defined as follows.

(i) If c ≥ dn, then m = n− 1, d′1 = d1 − dn and d′j = dj for j = 2, 3, . . . , n− 1;

(ii) If c = 0, then m = n− 1, d′j = dj for j = 1, 2, . . . , n− 2 and d′n−1 = dn−1 − dn;

(iii) If 0 < c < dn, then m = n, d′1 = d1 − c and d′j = dj for j = 2, 3, . . . , n − 1 and
d′n = dn − c.

An overview of degree sequences and related problems can be found in [7].
In this paper we characterize sequences that are multigraphic in a way similar to the

characterization of graphic sequences by Havel [4] and Hakimi [3] in Theorem 1. The
results of Hakimi (Theorem 2) and Butler (Theorem 3) follow.

Theorem 5. Let n ≥ 4 be an integer and let d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 be a sequence of
nonnegative integers. Let 2 ≤ j ≤ n be an index and let 1 ≤ m ≤ dn. Then the sequence
{d1, d2, . . . , dn} is multigraphic if and only if the sequence {d1 − m, d2, d3 . . . , dj−1, dj −
m, dj+1, dj+2, . . . , dn} is multigraphic.

Choosing j = n and m = dn, we conclude the next result as a corollary of Theorem 5.
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Corollary 6. Let n ≥ 4 be an integer and let d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 be a sequence of
nonnegative integers. Then the sequence {d1, d2, . . . , dn} is multigraphic if and only if the
sequence {d1 − dn, d2, d3 . . . , dn−1} is multigraphic.

Remark 7. (a) Corollary 7 together with Observation 8 as the termination criterion leads
to an algorithm that constructs a multigraph with a given degree sequence.

(b) A necessary condition for a sequence d1 ≥ d2 ≥ . . . ≥ dn ≥ 1 of integers to be realiz-
able by a connected multigraph is that the sum of the integers satisfies the inequality
∑n

i=1
di ≥ 2n− 2.

(c) Consider the algorithm suggested in (a). If d′1 = d′n−k = r ≥ 1 in the k-th step of the
construction, then d′1 = d′2 = . . . = d′n−k = r. A multigraph with this degree sequence
is given by G′ = (V ′, E ′), where V ′ = {x1, x2, . . . , xn−k} is the vertex set of G′. The
edges of G′ are defined as follows. The multigraph G′ has r

2
edges between xi and xi+1

if r is even and r−1

2
edges between x2j−1 and x2j and r+1

2
edges between x2j and x2j+1

if r is odd, where i = 1, 2, . . . , n − k and j = 1, 2, . . . , n−k
2

and all indices are taken
modulo n− k. Note that G′ is r-edge-connected if r ≥ 2.

(d) Let
∑n

i=1
di ≥ 2n− 2 and consider the algorithm suggested by Corollary 7 and Obser-

vation 8. In each step of the construction of the multigraph two vertices are joined by
j edges, where j is a sum (or difference) of some of the integers di. It follows that if
(c) is used as an additional termination criterion, the multigraph constructed by the
algorithm is p-edge-connected, where p is the greatest common divisor of d1, d2, . . . , dn.

(e) If two vertices are joined by j edges, this can be interpreted as a single weighted edge
with weigth j. The weighted simple graph constructed by the procedure suggested in a)
contains at most one cycle. Therefore it is a natural question to ask for necessary and
sufficient conditions for a given degree sequence to be realizable by a weighted tree.

2 Results

Lemma 8. Let d = d1 ≥ d2 ≥ · · · ≥ dn be a non-increasing sequence of positive integers.
If d is realizable by a 2-tree, then

k
∑

i=1

⌈di/2⌉ ≤ n + k − 2 (1)

for every k = 1, 2, . . . , n. Furthermore, if (1) is satisfied with equality, then for every 2-tree
realization T of d:

(i) the vertices corresponding to d1, d2, . . . , dk induce a tree in T ;

(ii) the vertices corresponding to dk+1, dk+2, . . . , dn induce an independent set in T ;
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(iii) every vertex of T is adjacent to at most one edge of weight 1.

Proof. Let T be a 2-tree with vertex set {x1, x2, . . . , xn} such that d(xi) = di. Since each
edge has weight at most 2, it holds

k
∑

i=1

|N(xi)| ≥
k

∑

i=1

⌈

di
2

⌉

.

On the other hand, the vertices {x1, x2, . . . , xk} induce a weighted forest F in T and thus,

k
∑

i=1

|N(xi)| = 2|E(F )|+ |E(F, F )| ≤ n+ |E(F )| − 1 ≤ n + k − 2.

...

Lemma 9. Let d = d1 ≥ d2 ≥ · · · ≥ dn be a non-increasing sequence of positive integers.
If ..., then d is not realizable by a 2-tree.

Proof. ...

Theorem 10. Let d = d1 ≥ d2 ≥ · · · ≥ dn, where n ≥ 4 be a non-increasing sequence of
positive integers that is 2-realizable. Let d′ be defined as follows:

(i) If dn = 2, let d′ be a non-increasing ordering of d1 − 2, d2, d3, . . . , dn−1.

(ii) If dn = 1 and d1 − 1, d2, d3, . . . , dn−1 is not of the structure as described in Lemma 9,
let d′ be a non-increasing ordering of d1 − 1, d2, d3, . . . , dn−1.

(iii) If dn = 1 and d1 − 1, d2, d3, . . . , dn−1 is of the structure as described in Lemma 9, let
d′ be a non-increasing ordering of d1, d2, . . . , dj−1, dj − 1, dj+1, dj+2, . . . , dn−1, where
j is the minimal index with the property that dj is odd.

The sequence d is realizable by a 2-tree if and only if d′ is realizable by a 2-tree.

Proof. Clearly, if d′ is realizable by a 2-tree, then the same holds for d. Now suppose that
d is 2-tree realizable. We shall discuss two cases depending on the value of dn.

If dn = 2, let d′ = d′1 ≥ d′2 ≥ · · · ≥ d′n−1 be a non-increasing ordering of d1 −
2, d2, d3, . . . , dn−1. Note that d′ is not of the structure described in Lemma 9, since the
original sequence d is not. Let T be a 2-tree with vertex set {x1, x2, . . . , xn} and d(xi) = di
chosen under the condition that the minimum j of the index set

{i : xi is adjacent to a leaf of T}

is minimal. If j = 1, then clearly T−y, where y is a leaf adjacent to x1 is a 2-tree realization
of d′. So assume that j ≥ 2.

4



16
 F

eb
ru

ary
 20

10

FIN
AL D

RAFT

The proof of the above theorem immediately gives us a recursive construction rule to
construct a 2-tree that has a given degree sequence.

Theorem 11. Let d = d1 ≥ d2 ≥ · · · ≥ dn be a non-increasing sequence of positive integers
that is 2-realizable. The sequence is realizable by a 2-tree if and only if

(1) for every k = 1, 2, . . . , n:
∑k

i=1
⌈di/2⌉ ≤ n + k − 2;

(2) ...

Proof. Necessity. This part follows from Lemmas 8 and 9.
Sufficiency. Suppose that d satisfies (1) and (2). The proof will be by induction on n.

If n = 2, then either d1 = d2 = 1 or d1 = d2 = 2 both of which are realizable by a properly
weighted K2. If n = 3, then either d = 2, 1, 1 or d = 3, 2, 1 or d = 4, 2, 2 all three of which
are realizable by a path of length two with properly weighted edges.

Now let n ≥ 4. We shall discuss two cases depending on whether a reduced sequence
satisfies (2).

Suppose first that d1−dn, d2, d3, . . . , dn−1 satisfies (2) and that ⌈(d1−dn)/2⌉ < ⌈d1/2⌉.
(In particular, this is the case when dn = 2, since the original sequence d satisfies (2).)
Let d′ = d′1 ≥ d′2 ≥ · · · ≥ d′n−1 be the corresponding ordered sequence with d′r = d1 − dn.

Assume that d′ does not satisfy (1). Let t be an index such that
∑t

i=1
⌈d′i/2⌉ > (n −

1) + t − 2 = n + t − 3. Obviously, it holds that t < r. Note that there exists a 2-tree
realization of d such that xn is a leaf. Hence there exists an index j such that the sequence
d1, d2, . . . , dj−1, dj − dn, dj+1, dj+2, . . . , dn−1 is 2-tree realizable. Let d∗ = d∗1 ≥ d∗2 ≥ · · · ≥
d∗n−1 be the corresponding ordered sequence with d∗s = dj − dn. Clearly, d∗i ≥ d′i for
i = 1, 2, . . . , j − 1. If j ≥ t+ 1, then

t
∑

i=1

⌈d∗i /2⌉ ≥

t
∑

i=1

⌈d′i/2⌉ > (n− 1) + t− 2,

a contradiction to (1). If j ≤ t, then s ≥ r > t and thus,

t
∑

i=1

⌈d∗i /2⌉ =
t

∑

i=1

⌈d′i/2⌉ > (n− 1) + t− 2,

again a contradiction to (1). So d′ satisfies (1) and is realizable by a 2-tree by the induction
hypothesis. Adding a vertex x and connecting x with x′

j via an edge of weight dn results
in a 2-tree realization of d.

Suppose second that d1−dn, d2, d3, . . . , dn−1 satisfies (2) and that ⌈(d1−dn)/2⌉ = ⌈d1/2⌉.
Then dn = 1 and d1 is even. Let d′ = d′1 ≥ d′2 ≥ · · · ≥ d′n−1 be the corresponding ordered
sequence with d′r = d1 − 1. Assume that d′ does not satisfy (1). Let t be an index such
that

∑t

i=1
⌈d′i/2⌉ > (n−1)+ t−2 = n+ t−3. Since

∑t

i=1
⌈d′i/2⌉ =

∑t

i=1
⌈di/2⌉, it follows

that
∑t

i=1
⌈di/2⌉ = n+ t−2. Hence any 2-tree realization of d has the structure described

in Lemma 8.
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Suppose last that d1 − dn, d2, d3, . . . , dn−1 does not satisfy (2). Then dn = 1, d1 is
odd, and d2, d3, . . . , dn−1 are even. We consider the sequence d1, d2 − 1, d3, d4, . . . , dn−1

which satisfies (2). Let d′ = d′1 ≥ d′2 ≥ · · · ≥ d′n−1 be the corresponding ordered sequence
with d′r = d2 − 1. Assume that d′ does not satisfy (1). Let t be an index such that
∑t

i=1
⌈d′i/2⌉ > (n− 1)+ t− 2 = n+ t− 3. Obviously, it holds that t < r. Note that xn is a

leaf in every 2-tree realization of d. Hence there exists an index j such that the sequence
d1, d2, . . . , dj−1, dj − 1, dj+1, dj+2, . . . , dn−1 is 2-tree realizable.

References

[1] F. Boesch and F. Harary, Line removal algorithms for graphs and their degree lists,
IEEE Trans. Circuits and Systems CAS-23 (1976), no. 12, 778–782, Special issue on
large-scale networks and systems.

[2] P. Dankelmann and O. Oellermann, Degree sequences of optimally edge-connected multi-
graphs, Ars Combin. 77 (2005), 161–168.

[3] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear
graph. I, J. Soc. Indust. Appl. Math. 10 (1962), 496–506.

[4] V. Havel, Eine Bemerkung über die Existenz der endlichen Graphen (Czech), Časopis
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