A remark on degree sequences of multigraphs

Dirk Meierling

Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany e-mail: meierling@math2.rwth-aachen.de

Abstract

A sequence $\{d_1, d_2, \ldots, d_n\}$ of nonnegative integers is graphic (multigraphic) if there exists a simple graph (multigraph) with vertices v_1, v_2, \ldots, v_n such that the degree $d(v_i)$ of the vertex v_i equals d_i for each $i = 1, 2, \ldots, n$. The (multi)graphic degree sequence problem is: Given a sequence of nonnegative integers, determine whether it is (multi)graphic or not. In this paper we characterize sequences that are multigraphic in a similar way, Havel [4] and Hakimi [3] characterized graphic sequences. Results of Hakimi [3] and Butler [1] follow.

1 Notation and introduction

In this paper we consider finite, undirected graphs G = (V, E) without loops with vertex set V and edge set E. A graph is called *simple* if there is at most one edge between each pair of vertices and a *multigraph* otherwise. The number of vertices |V| is called the *order* of G and is denoted by n(G).

If there is an edge between two vertices $u, v \in V$, then we denote the edge by uv. Furthermore, we call the vertex v a *neighbor* of u and say that uv is incident with u. The *neighborhood* of a vertex u is defined as the set $\{v \mid uv \in E\}$ and is usually denoted by N(u). For a vertex $v \in V$ we define the *degree* of v as the number of edges incident with v. A vertex $v \in V$ is called *isolated* if d(v) = 0.

Let $X \subset V$ be a subset of the vertex set of a graph G = (V, E). Then G - X denotes the graph that is obtained by removing all vertices of X and all edges that are incident with at least one vertex of X from G. For a subset $Y \subset E$ of the edge set the graph G - Yis obtained by removing all edges of Y.

A sequence $\{d_1, d_2, \ldots, d_n\}$ of nonnegative integers is graphic (multigraphic) if there exists a simple graph (multigraph) with vertices v_1, v_2, \ldots, v_n such that $d(v_i) = d_i$ for each $i = 1, 2, \ldots, n$. Note that $d_i = 0$ for an $i \in \{1, 2, \ldots, n\}$ if and only if v_i is an isolated vertex. Therefore we only consider sequences $\{d_1, d_2, \ldots, d_n\}$, where min $\{d_i \mid i = 1, 2, \ldots, n\} \ge 1$.

The *(multi)graphic degree sequence problem* is: Given a sequence of nonnegative integers, determine whether it is (multi)graphic or not. Havel [4] and Hakimi [3] presented a first solution of the graphic degree sequence problem in 1955 and 1962, respectively.

Theorem 1 (Havel [4] 1955, Hakimi [3] 1962). A sequence $d_1 \ge d_2 \ge \ldots \ge d_n$, where $n \ge 2$, of nonnegative integers is graphic if and only if the sequence $\{d_2 - 1, d_3 - 1, \ldots, d_{d_1+1} - 1, d_{d_1+2}, d_{d_1+3}, \ldots, d_n\}$ is graphic.

We now turn our attention to the multigraphic degree sequence problem. A proof of the following characterization by Hakimi [3] can also be found in the article [6] of Takahashi, Imai and Asano.

Theorem 2 (Hakimi [3] 1962). A sequence $d_1 \ge d_2 \ge \ldots \ge d_n$, where $n \ge 2$, of nonnegative integers is multigraphic if and only if the sum $\sum_{i=1}^n d_i$ is even and $d_1 \le d_2 + d_3 + \cdots + d_n$.

In 1976, Boesch and Harary presented in their article [1] another solution which is due to Butler.

Theorem 3 (Butler [1] 1976). Let $d_1 \ge d_2 \ge \ldots \ge d_n \ge 1$ be a sequence of nonnegative integers and let $2 \le j \le n$ be an index. Then the sequence $\{d_1, d_2, \ldots, d_n\}$ is multigraphic if and only if the sequence $\{d_1 - 1, d_2, d_3, \ldots, d_{j-1}, d_j - 1, d_{j+1}, d_{j+2}, \ldots, d_n\}$ is multigraphic.

This result suggests a construction method for multigraphs with a given degree sequence. Butler also proved that this procedure constructs a multigraph of maximal edge connectivity if the index j is selected equal to n in each step. In 1994, Takahashi, Imai and Asano [6] presented another algorithm to determine whether a given sequence of nonnegative integers is multigraphic and to construct a multigraph that realizes the degree sequence. However, the constructed multigraph is in general not connected (cf. Remark 9 and Figure 1).

Theorem 4 (Takahashi, Imai & Asano [6] 1994). Let $d_1 \ge d_2 \ge \ldots \ge d_n \ge 1$ be a sequence of nonnegative integers and let $c = d_1 - d_2$. Then the sequence $\{d_1, d_2, \ldots, d_n\}$ is multigraphic if and only if the sequence $\{d'_1, d'_2, \ldots, d'_m\}$ is multigraphic, where the integers m and d'_i for $j = 1, 2, \ldots, m$ are defined as follows.

- (i) If $c \ge d_n$, then m = n 1, $d'_1 = d_1 d_n$ and $d'_j = d_j$ for j = 2, 3, ..., n 1;
- (ii) If c = 0, then m = n 1, $d'_j = d_j$ for j = 1, 2, ..., n 2 and $d'_{n-1} = d_{n-1} d_n$;
- (iii) If $0 < c < d_n$, then m = n, $d'_1 = d_1 c$ and $d'_j = d_j$ for j = 2, 3, ..., n 1 and $d'_n = d_n c$.

An overview of degree sequences and related problems can be found in [7].

In this paper we characterize sequences that are multigraphic in a way similar to the characterization of graphic sequences by Havel [4] and Hakimi [3] in Theorem 1. The results of Hakimi (Theorem 2) and Butler (Theorem 3) follow.

Theorem 5. Let $n \ge 4$ be an integer and let $d_1 \ge d_2 \ge \ldots \ge d_n \ge 1$ be a sequence of nonnegative integers. Let $2 \le j \le n$ be an index and let $1 \le m \le d_n$. Then the sequence $\{d_1, d_2, \ldots, d_n\}$ is multigraphic if and only if the sequence $\{d_1 - m, d_2, d_3, \ldots, d_{j-1}, d_j - m, d_{j+1}, d_{j+2}, \ldots, d_n\}$ is multigraphic.

Choosing j = n and $m = d_n$, we conclude the next result as a corollary of Theorem 5.

Corollary 6. Let $n \ge 4$ be an integer and let $d_1 \ge d_2 \ge \ldots \ge d_n \ge 1$ be a sequence of nonnegative integers. Then the sequence $\{d_1, d_2, \ldots, d_n\}$ is multigraphic if and only if the sequence $\{d_1 - d_n, d_2, d_3, \ldots, d_{n-1}\}$ is multigraphic.

- **Remark 7.** (a) Corollary 7 together with Observation 8 as the termination criterion leads to an algorithm that constructs a multigraph with a given degree sequence.
- (b) A necessary condition for a sequence $d_1 \ge d_2 \ge \ldots \ge d_n \ge 1$ of integers to be realizable by a connected multigraph is that the sum of the integers satisfies the inequality $\sum_{i=1}^{n} d_i \ge 2n-2$.
- (c) Consider the algorithm suggested in (a). If $d'_1 = d'_{n-k} = r \ge 1$ in the k-th step of the construction, then $d'_1 = d'_2 = \ldots = d'_{n-k} = r$. A multigraph with this degree sequence is given by G' = (V', E'), where $V' = \{x_1, x_2, \ldots, x_{n-k}\}$ is the vertex set of G'. The edges of G' are defined as follows. The multigraph G' has $\frac{r}{2}$ edges between x_i and x_{i+1} if r is even and $\frac{r-1}{2}$ edges between x_{2j-1} and x_{2j} and $\frac{r+1}{2}$ edges between x_{2j} and x_{2j+1} if r is odd, where $i = 1, 2, \ldots, n-k$ and $j = 1, 2, \ldots, \frac{n-k}{2}$ and all indices are taken modulo n k. Note that G' is r-edge-connected if $r \ge 2$.
- (d) Let $\sum_{i=1}^{n} d_i \geq 2n-2$ and consider the algorithm suggested by Corollary 7 and Observation 8. In each step of the construction of the multigraph two vertices are joined by j edges, where j is a sum (or difference) of some of the integers d_i . It follows that if (c) is used as an additional termination criterion, the multigraph constructed by the algorithm is p-edge-connected, where p is the greatest common divisor of d_1, d_2, \ldots, d_n .
- (e) If two vertices are joined by j edges, this can be interpreted as a single weighted edge with weight j. The weighted simple graph constructed by the procedure suggested in a) contains at most one cycle. Therefore it is a natural question to ask for necessary and sufficient conditions for a given degree sequence to be realizable by a weighted tree.

2 Results

Lemma 8. Let $\mathbf{d} = d_1 \ge d_2 \ge \cdots \ge d_n$ be a non-increasing sequence of positive integers. If \mathbf{d} is realizable by a 2-tree, then

$$\sum_{i=1}^{k} \left\lceil d_i/2 \right\rceil \le n+k-2 \tag{1}$$

for every k = 1, 2, ..., n. Furthermore, if (1) is satisfied with equality, then for every 2-tree realization T of d:

- (i) the vertices corresponding to d_1, d_2, \ldots, d_k induce a tree in T;
- (ii) the vertices corresponding to $d_{k+1}, d_{k+2}, \ldots, d_n$ induce an independent set in T;

(iii) every vertex of T is adjacent to at most one edge of weight 1.

Proof. Let T be a 2-tree with vertex set $\{x_1, x_2, \ldots, x_n\}$ such that $d(x_i) = d_i$. Since each edge has weight at most 2, it holds

$$\sum_{i=1}^{k} |N(x_i)| \ge \sum_{i=1}^{k} \left\lceil \frac{d_i}{2} \right\rceil$$

On the other hand, the vertices $\{x_1, x_2, \ldots, x_k\}$ induce a weighted forest F in T and thus,

$$\sum_{i=1}^{k} |N(x_i)| = 2|E(F)| + |E(F,\overline{F})| \le n + |E(F)| - 1 \le n + k - 2.$$

Lemma 9. Let $\mathbf{d} = d_1 \ge d_2 \ge \cdots \ge d_n$ be a non-increasing sequence of positive integers. If ..., then d is not realizable by a 2-tree.

Proof. ...

...

Theorem 10. Let $\mathbf{d} = d_1 \ge d_2 \ge \cdots \ge d_n$, where $n \ge 4$ be a non-increasing sequence of positive integers that is 2-realizable. Let \mathbf{d}' be defined as follows:

- (i) If $d_n = 2$, let \mathbf{d}' be a non-increasing ordering of $d_1 2, d_2, d_3, \ldots, d_{n-1}$.
- (ii) If $d_n = 1$ and $d_1 1, d_2, d_3, \ldots, d_{n-1}$ is not of the structure as described in Lemma 9, let d' be a non-increasing ordering of $d_1 - 1, d_2, d_3, \ldots, d_{n-1}$.
- (iii) If $d_n = 1$ and $d_1 1, d_2, d_3, \ldots, d_{n-1}$ is of the structure as described in Lemma 9, let **d'** be a non-increasing ordering of $d_1, d_2, ..., d_{j-1}, d_j - 1, d_{j+1}, d_{j+2}, ..., d_{n-1}$, where j is the minimal index with the property that d_j is odd.

The sequence d is realizable by a 2-tree if and only if d' is realizable by a 2-tree.

Proof. Clearly, if d' is realizable by a 2-tree, then the same holds for d. Now suppose that d is 2-tree realizable. We shall discuss two cases depending on the value of d_n .

If $d_n = 2$, let $\mathbf{d}' = d'_1 \geq d'_2 \geq \cdots \geq d'_{n-1}$ be a non-increasing ordering of $d_1 - \mathbf{d}'_1 = \mathbf{d}'_1 \geq \mathbf{d}'_2 \geq \cdots \geq \mathbf{d}'_{n-1}$ $2, d_2, d_3, \ldots, d_{n-1}$ Note that d' is not of the structure described in Lemma 9, since the original sequence **d** is not. Let T be a 2-tree with vertex set $\{x_1, x_2, \ldots, x_n\}$ and $d(x_i) = d_i$ chosen under the condition that the minimum j of the index set

 $\{i: x_i \text{ is adjacent to a leaf of } T\}$

is minimal. If j = 1, then clearly T - y, where y is a leaf adjacent to x_1 is a 2-tree realization of d'. So assume that $j \geq 2$.

The proof of the above theorem immediately gives us a recursive construction rule to construct a 2-tree that has a given degree sequence.

Theorem 11. Let $\mathbf{d} = d_1 \ge d_2 \ge \cdots \ge d_n$ be a non-increasing sequence of positive integers that is 2-realizable. The sequence is realizable by a 2-tree if and only if

(1) for every k = 1, 2, ..., n: $\sum_{i=1}^{k} \lceil d_i/2 \rceil \le n + k - 2;$

Proof. Necessity. This part follows from Lemmas 8 and 9.

Sufficiency. Suppose that **d** satisfies (1) and (2). The proof will be by induction on n. If n = 2, then either $d_1 = d_2 = 1$ or $d_1 = d_2 = 2$ both of which are realizable by a properly weighted K_2 . If n = 3, then either $\mathbf{d} = 2, 1, 1$ or $\mathbf{d} = 3, 2, 1$ or $\mathbf{d} = 4, 2, 2$ all three of which are realizable by a path of length two with properly weighted edges.

Now let $n \ge 4$. We shall discuss two cases depending on whether a reduced sequence satisfies (2).

Suppose first that $d_1 - d_n, d_2, d_3, \ldots, d_{n-1}$ satisfies (2) and that $\lceil (d_1 - d_n)/2 \rceil < \lceil d_1/2 \rceil$. (In particular, this is the case when $d_n = 2$, since the original sequence **d** satisfies (2).) Let $\mathbf{d}' = d'_1 \ge d'_2 \ge \cdots \ge d'_{n-1}$ be the corresponding ordered sequence with $d'_r = d_1 - d_n$. Assume that \mathbf{d}' does not satisfy (1). Let t be an index such that $\sum_{i=1}^t \lceil d'_i/2 \rceil > (n-1) + t - 2 = n + t - 3$. Obviously, it holds that t < r. Note that there exists a 2-tree realization of \mathbf{d} such that x_n is a leaf. Hence there exists an index j such that the sequence $d_1, d_2, \ldots, d_{j-1}, d_j - d_n, d_{j+1}, d_{j+2}, \ldots, d_{n-1}$ is 2-tree realizable. Let $\mathbf{d}^* = d_1^* \ge d_2^* \ge \cdots \ge d_{n-1}^*$ be the corresponding ordered sequence with $d_s^* = d_j - d_n$. Clearly, $d_i^* \ge d'_i$ for $i = 1, 2, \ldots, j - 1$. If $j \ge t + 1$, then

$$\sum_{i=1}^{t} \lceil d_i^*/2 \rceil \ge \sum_{i=1}^{t} \lceil d_i'/2 \rceil > (n-1) + t - 2,$$

a contradiction to (1). If $j \leq t$, then $s \geq r > t$ and thus,

$$\sum_{i=1}^{t} \lceil d_i^*/2 \rceil = \sum_{i=1}^{t} \lceil d_i'/2 \rceil > (n-1) + t - 2,$$

again a contradiction to (1). So \mathbf{d}' satisfies (1) and is realizable by a 2-tree by the induction hypothesis. Adding a vertex x and connecting x with x'_j via an edge of weight d_n results in a 2-tree realization of \mathbf{d} .

Suppose second that $d_1-d_n, d_2, d_3, \ldots, d_{n-1}$ satisfies (2) and that $\lceil (d_1-d_n)/2 \rceil = \lceil d_1/2 \rceil$. Then $d_n = 1$ and d_1 is even. Let $\mathbf{d}' = d'_1 \ge d'_2 \ge \cdots \ge d'_{n-1}$ be the corresponding ordered sequence with $d'_r = d_1 - 1$. Assume that \mathbf{d}' does not satisfy (1). Let t be an index such that $\sum_{i=1}^t \lceil d'_i/2 \rceil > (n-1) + t - 2 = n + t - 3$. Since $\sum_{i=1}^t \lceil d'_i/2 \rceil = \sum_{i=1}^t \lceil d_i/2 \rceil$, it follows that $\sum_{i=1}^t \lceil d_i/2 \rceil = n + t - 2$. Hence any 2-tree realization of \mathbf{d} has the structure described in Lemma 8.

^{(2) ...}

Suppose last that $d_1 - d_n, d_2, d_3, \ldots, d_{n-1}$ does not satisfy (2). Then $d_n = 1, d_1$ is odd, and $d_2, d_3, \ldots, d_{n-1}$ are even. We consider the sequence $d_1, d_2 - 1, d_3, d_4, \ldots, d_{n-1}$ which satisfies (2). Let $\mathbf{d}' = d'_1 \ge d'_2 \ge \cdots \ge d'_{n-1}$ be the corresponding ordered sequence with $d'_r = d_2 - 1$. Assume that \mathbf{d}' does not satisfy (1). Let t be an index such that $\sum_{i=1}^t \lceil d'_i/2 \rceil > (n-1) + t - 2 = n + t - 3$. Obviously, it holds that t < r. Note that x_n is a leaf in every 2-tree realization of \mathbf{d} . Hence there exists an index j such that the sequence $d_1, d_2, \ldots, d_{j-1}, d_j - 1, d_{j+1}, d_{j+2}, \ldots, d_{n-1}$ is 2-tree realizable.

References

- [1] F. Boesch and F. Harary, *Line removal algorithms for graphs and their degree lists*, IEEE Trans. Circuits and Systems **CAS-23** (1976), no. 12, 778–782, Special issue on large-scale networks and systems.
- [2] P. Dankelmann and O. Oellermann, Degree sequences of optimally edge-connected multigraphs, Ars Combin. 77 (2005), 161–168.
- [3] S. L. Hakimi, On realizability of a set of integers as degrees of the vertices of a linear graph. I, J. Soc. Indust. Appl. Math. 10 (1962), 496–506.
- [4] V. Havel, Eine Bemerkung über die Existenz der endlichen Graphen (Czech), Casopis Pěst. Mat. 80 (1955), 477–480.
- [5] D. Meierling and L. Volkmann, A remark on degree sequences of multigraphs, Math. Meth. Oper. Res. 69 (2009), 369–374.
- [6] M. Takahashi, K. Imai, and T. Asano, Graphical degree sequence problems, IEICE Trans. on Fundamentals E77-A (1994), no. 3, 546–552.
- [7] R. I. Tyshkevich, A. A. Chernyak, and Zh. A. Chernyak, Graphs and degree sequences. I, Kibernetika (Kiev) (1987), no. 6, 12–19, 133.